6 resultados para crash type analysis

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Samples of filtered particulate organic matter (POM) were obtained during the summers of 1999 and 2000 from the surface waters of the Nordic seas to monitor the spatial distribution of long-chain alkenones. The aim of the study was to appraise existing alkenone-based climatic proxies in northern high latitudes. Unusually high percentages of the tetraunsaturated alkenone were measured in the polar waters of the East Greenland Current, with C37:4 of up to 77% in 80% of sea-ice cover. Values of percent C37:4 across the Nordic seas showed a strong association with water mass type. Analysis of coccoliths in filters indicated that calcified Emiliania huxleyi could not be discounted as the biological precursor of alkenones in all the water masses. A combined data set of 69 samples of POM revealed a stronger correlation of percent C37:4 to sea surface salinity (SSS; R2 = 0.72) than to sea surface temperature (SST; R2 = 0.50). Values of percent C37:4 in sea surface POM were much higher than those in surficial sediments of the northern North Atlantic. To explain the discrepancy in sedimentary and surface water column percent C37:4, we propose that the alkenone contents in surface sediments underlying arctic and polar waters are a combination of autochthonous and allochthonous inputs of alkenones. Our results show that percent C37:4 can be used to reconstruct the relative extension of arctic/polar water masses in the North Atlantic. However, the results prevent confirmation of percent C37:4 as a paleo-SSS proxy in the Nordic seas, given its multivariate nature in our data set and the decoupling between its range of values in surface waters and sediments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The location of the seaward tip of a subduction thrust controls material transfer at convergent plate margins, and hence global mass balances. At approximately half of those margins, the material of the subducting plate is completely underthrust so that no accretion or even subduction erosion takes place. Along the remaining margins, material is scraped off the subducting plate and added to the upper plate by frontal accretion. We here examine the physical properties of subducting sediments off Costa Rica and Nankai, type examples for an erosional and an accretionary margin, to investigate which parameters control the level where the frontal thrust cuts into the incoming sediment pile. A series of rotary-shear experiments to measure the frictional strength of the various lithologies entering the two subduction zones were carried out. Results include the following findings: (1) At Costa Rica, clay-rich strata at the top of the incoming succession have the lowest strength (µres = 0.19) while underlying calcareous ooze, chalk and diatomite are strong (up to µres = 0.43; µpeak = 0.56). Hence the entire sediment package is underthrust. (2) Off Japan, clay-rich deposits within the lower Shikoku Basin inventory are weakest (µres = 0.13-0.19) and favour the frontal proto-thrust to migrate into one particular horizon between sandy, competent turbidites below and ash-bearing mud above. (3) Taking in situ data and earlier geotechnical testing into account, it is suggested that mineralogical composition rather than pore-pressure defines the position of the frontal thrust, which locates in the weakest, clay mineral-rich (up to 85 wt.%) materials. (4) Smectite, the dominant clay mineral phase at either margin, shows rate strengthening and stable sliding in the frontal 50 km of the subduction thrust (0.0001-0.1 mm/s, 0.5-25 MPa effective normal stress). (5) Progressive illitization of smectite cannot explain seismogenesis, because illite-rich samples also show velocity strengthening at the conditions tested.