6 resultados para cosmic ray theory

em Publishing Network for Geoscientific


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The thermal diffusion enrichment apparatus in use in Amsterdam before 1967, has been rebuilt in the Groningen Radiocarbon Dating Laboratory. It has been shown to operate reliably and reproducibly. A reasonable agreement exists between the theoretical calculations and the experimental results. The 14C enrichment of a CO sample is deduced from the simultaneous mass 30 enrichment, which is measured with a mass spectrometer. The relation between both enrichments follows from a series of calibration measurements. The over-all accuracy in the enrichment is a few percent, equivalent to a few hundred years in age. The main problem in dating very old samples is their possible contamination with recent carbon. Generally, careful sample selection and rigorous pretreatment reduce sample contamination to an acceptable value. Also, it has been established that laboratory contamination, due to a memory effect in the combustion system and to impurities in the oxygen and nitrogen gas used for combustion, can be eliminated. A detailed analysis shows that the counter background in our set-up is almost exclusively caused by cosmic ray muons. The measurement of 28 early glacial samples, mostly from North-west Europe, has yielded a consistent set of ages. These indicate the existence of three early glacial interstadials; using the Weichselian definitions: Amersfoort starting at 68 200 ± 1100, Brørup at 64 400 ± 800 and Odderade at 60 500 ± 600 years BP. This 14C chronology shows good agreement with the Camp Century chronology and the dated palaeo sea levels. The discrepancy in the age of the early part of the Last Glacial on the 14C time scale and on that adopted for the deep-sea d18 record, must probably be attributed to the use of a generalized d18 curve and a wrong interpretation of this curve in terms of three Barbados terraces.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A quality-controlled snow and meteorological dataset spanning the period 1 August 1993-31 July 2011 is presented, originating from the experimental station Col de Porte (1325 m altitude, Chartreuse range, France). Emphasis is placed on meteorological data relevant to the observation and modelling of the seasonal snowpack. In-situ driving data, at the hourly resolution, consist of measurements of air temperature, relative humidity, windspeed, incoming short-wave and long-wave radiation, precipitation rate partitioned between snow- and rainfall, with a focus on the snow-dominated season. Meteorological data for the three summer months (generally from 10 June to 20 September), when the continuity of the field record is not warranted, are taken from a local meteorological reanalysis (SAFRAN), in order to provide a continuous and consistent gap-free record. Data relevant to snowpack properties are provided at the daily (snow depth, snow water equivalent, runoff and albedo) and hourly (snow depth, albedo, runoff, surface temperature, soil temperature) time resolution. Internal snowpack information is provided from weekly manual snowpit observations (mostly consisting in penetration resistance, snow type, snow temperature and density profiles) and from a hourly record of temperature and height of vertically free ''settling'' disks. This dataset has been partially used in the past to assist in developing snowpack models and is presented here comprehensively for the purpose of multi-year model performance assessment. The data is placed on the PANGAEA repository (doi:10.1594/PANGAEA.774249) as well as on the public ftp server ftp://ftp-cnrm.meteo.fr/pub-cencdp/.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The McMurdo Dry Valleys, Antarctica (MDV) are among the oldest landscapes on Earth, and some landforms there present an intriguing apparent contradiction such that millions of years old surface deposits maintain their meter-scale morphology despite the fact that measured erosion rates are 0.1-4 m/Ma. We analyzed the concentration of cosmic ray-produced 10Be and 26Al in quartz sands from regolith directly above and below two well-documented ash deposits in the MDV, the Arena Valley ash (40Ar/39Ar age of 4.33 Ma) and the Hart ash (K-Ar age of 3.9 Ma). Measured concentrations of 10Be and 26Al are significantly less than expected given the age of the in situ air fall ashes and are best interpreted as reflecting the degradation rate of the overlying sediments. The erosion rate of the material above the Arena Valley ash that best explains the observed isotope profiles is 3.5 ± 0.41 x 10**-5 g/cm**2/yr (~0.19 m/Ma) for the past ~4 Ma. For the Hart ash, the erosion rate is 4.8 ± 0.21 x 10**-4 g/cm**2/yr (~2.6 m/Ma) for the past ~1 Ma. The concentration profiles do not show signs of mixing, creep, or deflation caused by sublimation of ground ice. These results indicate that the slow, steady lowering of the surface without vertical mixing may allow landforms to maintain their meter-scale morphology even though they are actively eroding.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New geochronometers are needed for sediments of the Arctic Ocean spanning at least the last half million years, largely because oxygen-isotope stratigraphy is relatively ineffective in this ocean, and because other dating techniques require significant assumptions about sedimentation rates. Multi-aliquot luminescence sediment-dating procedures were applied to polymineral, fine-silt samples from 9 core-top and 37 deeper samples from 20 cores representing 19 sites across the Arctic Ocean. Most samples have independent age assignments and other known properties (e.g., % coarse fraction, % carbonate, U-Th isotopes). Thick-source alpha-particle counting indicates that for most regions the contribution of measured unsupported 230Th and 231Pa to calculated dose rates is

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The nucleonic component of the cosmic rays has been measured by the German research vessel "Meteor" during the Atlantic Expedition IQSY 1965. The pressure corrected intensities fit well the rigidity calculations of Kondo and Kodamo. In this way we confirm the earth's magnetic field model used by these authors. Two positions of the cosmic ray equator have been determined at 29,7 °W (6,5 ± 1) °N and at 19 °W (7 ± 1) °N. These positions agree with the calculated values of Kondo and Kodamo. The total latitude effect of the nucleonic component amounts to 1.74 and 1.76. The measurements were carried out at solar minima activity. Using the values of latitude measurements at maxima solar activity the degree of modulation of the primary cosmic rays was determined in the rigidity range 2 - 13 GV. For rigidity values above 6 GV the modulation remains constant to 20 %.