27 resultados para correlated data
em Publishing Network for Geoscientific
Resumo:
Understanding how the environment influences patterns of diversity is vital for effective conservation management, especially in a changing global climate. While assemblage structure and species richness patterns are often correlated with current environmental factors, historical influences may also be considerable, especially for taxa with poor dispersal abilities. Mountain-top regions throughout tropical rainforests can act as important refugia for taxa characterised by low dispersal capacities such as flightless ground beetles (Carabidae), an ecologically significant predatory group. We surveyed flightless ground beetles along elevational gradients in five different subregions within the Australian Wet Tropics World Heritage Area to investigate (1) whether the diversity and composition of flightless ground beetles are elevationally stratified, and, if so, (2) what environmental factors (other than elevation per se) are associated with these patterns. Generalised linear models and model averaging techniques were used to relate patterns of diversity to environmental factors. Unlike most taxonomic groups, flightless ground beetles increased in species richness and abundance with elevation. Additionally, each subregion consisted of distinct assemblages containing a high level of regional endemic species. Species richness was most strongly positively associated with the historical climatic conditions and negatively associated with severity of recent disturbance (treefalls) and current climatic conditions. Assemblage composition was associated with latitude and current and historical climatic conditions. Our results suggest that distributional patterns of flightless ground beetles are not only likely to be associated with factors that change with elevation (current climatic conditions), but also factors that are independent of elevation (recent disturbance and historical climatic conditions). Variation in historical vegetation stability explained both species richness and assemblage composition patterns, probably reflecting the significance of upland refugia at a geographic time scale. These findings are important for conservation management as upland habitats are under threat from climate change.
Resumo:
Laminated lake sediments from the Dead Sea basin provide high-resolution records of climatic variability in the eastern Mediterranean region, which is especially sensitive to changing climatic conditions. In this study, we aim on detailed reconstruction of climatic fluctuations and related changes in the frequency of flood and dust deposition events at ca. 3300 and especially at 2800 cal. yr BP from high-resolution sediment records of the Dead Sea basin. A ca. 4-m-thick, mostly varved sediment section from the western margin of the Dead Sea (DSEn - Ein Gedi profile) was analysed and correlated to the new International Continental Scientific Drilling Program (ICDP) Dead Sea Deep Drilling Project core 5017-1 from the deep basin. To detect even single event layers, we applied a multi-proxy approach of high-resolution microscopic thin section analyses, micro-X-ray fluorescence (µ-XRF) element scanning and magnetic susceptibility measurements, supported by grain size data and palynological analyses. Based on radiocarbon and varve dating, two pronounced dry periods were detected at ~3500-3300 and ~3000-2400 cal. yr BP which are differently expressed in the sediment records. In the shallow-water core (DSEn), the older dry period is characterised by a thick sand deposit, whereas the sedimentological change at 2800 cal. yr BP is less pronounced and characterised mainly by an enhanced frequency of coarse detrital layers interpreted as erosion events. In the 5017-1 deep-basin core, both dry periods are depicted by halite deposits. The onset of the younger dry period coincides with the Homeric Grand Solar Minimum at ca. 2800 cal. yr BP. Our results suggest that during this period, the Dead Sea region experienced an overall dry climate, superimposed by an increased occurrence of flash floods caused by a change in synoptic weather patterns.
Resumo:
Samples of drilled oceanic crust, from DSDP Holes 417A, 417D and 418A and ODP Hole 735B, and oceanic crust from the Oman and Cyprus ophiolites, were analyzed for B contents and d11B. Composite samples from DSDP Holes 417A, 417D and 418A were used to represent the upper 550 m of altered oceanic crustal Layer 2A. Whole-rock samples from the Troodos ophiolite, Cyprus, and the Oman ophiolite were selected to represent crustal Layer 2B dikes. Composite samples from ODP Hole 735B were used to represent crustal Layer 3. The B content of the DSDP composites ranges from 7.2 ppm to 104 ppm and correlates with both d1818O and K, showing that it is a good indicator of the extent of low temperature alteration. The d11B of the DSDP composites varies between -2.5? and 5.4?. The B content of the samples from the Troodos ophiolite ranges from 2.4 ppm to 8.1 ppm; d11B varies from -0.9? to 7.8?. The B content of the Oman ophiolite samples ranges from 5.0 ppm to 11.1 ppm; d11B varies from -1.6? to 16.9?. The B content of the samples from ODP Hole 735B ranges from 1.1 ppm to 7.1 ppm; d11B varies from -4.3? to 24.9?. The general pattern displayed by these samples is one of greatest (and most variable) B enrichment at the top of the crust and least enrichment at the bottom of the section. All of these samples are enriched compared to unaltered MORB, which is believed to have a B content of approximately 0.5 ppm. The d11B values of deeper samples, from Layers 2B and 3, are more variable and generally higher than those from Layer 2A. Boron contents and d11B are not correlated. The data from the DSDP Site 417/418 composites indicate that the d11B of fluid circulating in the upper crust changes only slightly during alteration, increasing by an average of 5.1? with an accompanying decrease in B concentration of 7%. Low temperature alteration appears to be a water-dominated process resulting in minor modification of circulating seawater. A minimum water-rock ratio of 400 is calculated for these samples, implying a minimum low-temperature seawater flux through the upper oceanic crust of 3.4?10**14 l/y. The average B content of altered oceanic crust, as represented by these samples, is 5.2+/-1.7 ppm and the average d11B is 3.4+/-1.1?. This average isotopic composition is measurably different from the apparent average of oceanic sediments, supporting the idea that d11B could be useful for identifying the source(s) of B in island arcs.
Resumo:
Total organic carbon (TOC) was analyzed on four transects along 140°W in 1992 using a high temperature combustion/discrete injection (HTC/DI) analyzer. For two of the transects, the analyses were conducted on-board ship. Mixed-layer concentrations of organic carbon varied from about 80 µM C at either end of the transect (12°N and 12°S) to about 60 µM C at the equator. Total organic carbon concentrations decreased rapidly below the mixed-layer to about 38-40 µM C at 1000 m across the transect. Little variation was observed below this depth; deep water concentrations below 2000 m were virtually monotonic at about 36 µM C. Repeat measurements made on subsequent cruises consistently found the same concentrations at 1000 m or deeper, but substantial variations were observed in the mixed-layer and the upper water column above 400 m depth. Linear mixing models of total organic carbon versus sigmaT exhibited zones of organic carbon formation and consumption. TOC was found to be inversely correlated with apparent oxygen utilization (AOU) in the region between the mixed-layer and the oxygen minimum. In the mixed-layer, TOC concentrations varied seasonally. Part of the variations in TOC at the equator was driven by changes in the upwelling rate in response to variations in physical forcing related to an El Niño and to the passage of tropical instability waves. TOC export fluxes, calculated from simple box models, averaged 8±4 mmol C/m**2/day at the equator and also varied seasonally. These export fluxes account for 50-75% of the total carbon deficit and are consistent with other estimates and model predictions.
Resumo:
The relative effects of paleoceanographic and paleogeographic variations, sediment lithology, and diagenetic processes on the recorded rare earth element (REE) chemistry of Japan Sea sediments are evaluated by investigating REE total abundances and relative fractionations in 59 samples from Ocean Drilling Program Leg 127. REE total abundances (Sum REE) in the Japan Sea are strongly dependent upon the paleoceanographic position of a given site with respect to terrigenous and biogenic sources. REE concentrations at Site 794 (Yamato Basin) overall correspond well to aluminosilicate chemical indices and are strongly diluted by SiO2 within the late Miocene-Pliocene diatomaceous sequence. Eu/Eu* values at Site 794 reach a maximum through the diatomaceous interval as well, most likely suggesting an association of Eu/Eu* with the siliceous component, or reflecting slight incorporation of a detrital feldspar phase. Sum REE at Site 795 (Japan Basin) also is affiliated strongly with aluminosilicate phases, yet is diluted only slightly by siliceous input. At Site 797 (Yamato Basin), REE is not as clearly associated with the aluminosilicate fraction, is correlated moderately to siliceous input, and may be sporadically influenced by detrital heavy minerals originating from the nearby rifted continental fragment composing the Yamato Rise. The biogenic influence is largest at Site 794, moderately developed at Site 797, and of only minor importance at Site 795, reflecting basinal contrasts in productivity such that the Yamato Basin records greater biogenic input than the Japan Basin, while the most productive waters overlie the easternmost sequence of Site 794. Ce/Ce* profiles at all three sites increase monotonically with depth, and record progressive diagenetic LREE fractionation. The observed Ce/Ce* record does not respond to changes in oxygenation state of the overlying water, and Ce/Ce* correlates slightly better with depth than with age. The downhole increase in Ce/Ce* at Site 794 and Site 797 is a passive response to diagenetic transfer of LREE (except Ce) from sediment to interstitial water. At Site 795, the overall lack of correlation between Ce/Ce* and La_n/Yb_n suggests that other processes are occurring which mask the diagenetic behavior of all LREEs. First-order calculations of the Ce budget in Japan Sea waters and sediment indicate that ~20% of the excess Ce adsorbed by settling particles is recycled within the water column, and that an additional ~38% is recycled at or near the seafloor (data from Masuzawa and Koyama, 1989). Thus, because the remaining excess Ce is only ~10% of the total Ce, there is not a large source of Ce to the deeply buried sediment, further suggesting that the downhole increase in Ce/Ce* is a passive response to diagenetic behavior of the other LREEs. The REE chemistry of Japan Sea sediment therefore predicts successive downhole addition of LREEs to deeply-buried interstitial waters.
Resumo:
Samples for total organic carbon (TOC) analysis were collected on WOCE Line P15S (0° to 67°S along 170°W) and from 53° to 67°S along 170°E in the western South Pacific, and on Line I8 (5°N to 43°S along 80°/90°E) in the central Indian Ocean. TOC concentrations in the upper ocean varied greatly between the regions studied. Highest surface TOC concentrations (81-85 µM C and 68-73 µM C) were observed in the warmest waters (>27°C) of the western South Pacific and central Indian Oceans, respectively. Lowest surface TOC concentrations (45-65 µM C) were recorded in the southernmost waters occupied (>50°S along 170°W and 170°E). Deep water (>1000 m) TOC concentrations were uniform across all regions analyzed, averaging between 42.3 and 43 µM C (SD: ±0.9 µM C). Mixing between TOC-rich surface waters and TOC-poor deep waters was indicated by the strong correlations between TOC and temperature (r2>0.80, north of 45°S) and TOC and density (r2>0.50, southernmost regions). TOC was inversely correlated with apparent oxygen utilization (AOU) along isopycnal surfaces north of the Polar Frontal Zone (PFZ) and at depths <500 m. The TOC:AOU molar ratios at densities of sigmaT 23-27 ranged from -0.15 to -0.34 in the South Pacific and from -0.13 to -0.31 in the Indian Ocean. These ratios indicate that TOC oxidation was responsible for 21%-47% and 18%-43% of oxygen consumption in the upper South Pacific and Indian Oceans, respectively. At greater depths, TOC did not contribute to the development of AOU. There was no evidence for significant export of dissolved and suspended organic carbon along isopycnal surfaces that ventilate near the PFZ.
Resumo:
Differences in regional responses to climate fluctuations are well documented on short time scales (e.g., El Niño-Southern Oscillation), but with the exception of latitudinal temperature gradients, regional patterns are seldom considered in discussions of ancient greenhouse climates. Contrary to the expectation of global warming or global cooling implicit in most treatments of climate evolution over millions of years, this paper shows that the North Atlantic warmed by as much as 6°C (1.5% decrease in d18O values of planktic foraminifera) during the Maastrichtian global cooling interval. We suggest that warming was the result of the importation of heat from the South Atlantic. Decreasing North Atlantic d18O values are also associated with increasing gradients in planktic d13C values, suggesting increasing surface-water stratification and a correlated strengthening of the North Atlantic Polar Front. If correct, this conclusion predicts arctic cooling during the late Maastrichtian. Beyond implications for the Maastrichtian, these data demonstrate that climate does not behave as if there is a simple global thermostat, even on geologic time scales.
Resumo:
Oxygen-deficient waters in the ocean, generally referred to as oxygen minimum zones (OMZ), are expected to expand as a consequence of global climate change. Poor oxygenation is promoting microbial loss of inorganic nitrogen (N) and increasing release of sediment-bound phosphate (P) into the water column. These intermediate water masses, nutrient-loaded but with an N deficit relative to the canonical N:P Redfield ratio of 16:1, are transported via coastal upwelling into the euphotic zone. To test the impact of nutrient supply and nutrient stoichiometry on production, partitioning and elemental composition of dissolved (DOC, DON, DOP) and particulate (POC, PON, POP) organic matter, three nutrient enrichment experiments were conducted with natural microbial communities in shipboard mesocosms, during research cruises in the tropical waters of the southeast Pacific and the northeast Atlantic. Maximum accumulation of POC and PON was observed under high N supply conditions, indicating that primary production was controlled by N availability. The stoichiometry of microbial biomass was unaffected by nutrient N:P supply during exponential growth under nutrient saturation, while it was highly variable under conditions of nutrient limitation and closely correlated to the N:P supply ratio, although PON:POP of accumulated biomass generally exceeded the supply ratio. Microbial N:P composition was constrained by a general lower limit of 5:1. Channelling of assimilated P into DOP appears to be the mechanism responsible for the consistent offset of cellular stoichiometry relative to inorganic nutrient supply and nutrient drawdown, as DOP build-up was observed to intensify under decreasing N:P supply. Low nutrient N:P conditions in coastal upwelling areas overlying O2-deficient waters seem to represent a net source for DOP, which may stimulate growth of diazotrophic phytoplankton. These results demonstrate that microbial nutrient assimilation and partitioning of organic matter between the particulate and the dissolved phase are controlled by the N:P ratio of upwelled nutrients, implying substantial consequences for nutrient cycling and organic matter pools in the course of decreasing nutrient N:P stoichiometry.
Resumo:
Microbial communities and their associated metabolic activity in marine sediments have a profound impact on global biogeochemical cycles. Their composition and structure are attributed to geochemical and physical factors, but finding direct correlations has remained a challenge. Here we show a significant statistical relationship between variation in geochemical composition and prokaryotic community structure within deep-sea sediments. We obtained comprehensive geochemical data from two gravity cores near the hydrothermal vent field Loki's Castle at the Arctic Mid-Ocean Ridge, in the Norwegian-Greenland Sea. Geochemical properties in the rift valley sediments exhibited strong centimeter-scale stratigraphic variability. Microbial populations were profiled by pyrosequencing from 15 sediment horizons (59,364 16S rRNA gene tags), quantitatively assessed by qPCR, and phylogenetically analyzed. Although the same taxa were generally present in all samples, their relative abundances varied substantially among horizons and fluctuated between Bacteria- and Archaea-dominated communities. By independently summarizing covariance structures of the relative abundance data and geochemical data, using principal components analysis, we found a significant correlation between changes in geochemical composition and changes in community structure. Differences in organic carbon and mineralogy shaped the relative abundance of microbial taxa. We used correlations to build hypotheses about energy metabolisms, particularly of the Deep Sea Archaeal Group, specific Deltaproteobacteria, and sediment lineages of potentially anaerobic Marine Group I Archaea. We demonstrate that total prokaryotic community structure can be directly correlated to geochemistry within these sediments, thus enhancing our understanding of biogeochemical cycling and our ability to predict metabolisms of uncultured microbes in deep-sea sediments.
Resumo:
The severity of the impact of elevated atmospheric pCO2 to coral reef ecosystems depends, in part, on how seawater pCO2 affects the balance between calcification and dissolution of carbonate sediments. Presently, there are insufficient published data that relate concentrations of pCO2 and CO3**2- to in situ rates of reef calcification in natural settings to accurately predict the impact of elevated atmospheric pCO2 on calcification and dissolution processes. Rates of net calcification and dissolution, CO3**2- concentrations, and pCO2 were measured, in situ, on patch reefs, bare sand, and coral rubble on the Molokai reef flat in Hawaii. Rates of calcification ranged from 0.03 to 2.30 mmol CaCO3/m**2/h and dissolution ranged from -0.05 to -3.3 mmol CaCO3/m**2/h. Calcification and dissolution varied diurnally with net calcification primarily occurring during the day and net dissolution occurring at night. These data were used to calculate threshold values for pCO2 and CO3**2- at which rates of calcification and dissolution are equivalent. Results indicate that calcification and dissolution are linearly correlated with both CO3**2- and pCO2. Threshold pCO2 and CO3**2- values for individual substrate types showed considerable variation. The average pCO2 threshold value for all substrate types was 654±195 µatm and ranged from 467 to 1003 µatm. The average CO3**2- threshold value was 152±24 µmol/kg, ranging from 113 to 184 µmol/kg. Ambient seawater measurements of pCO2 and CO3**2- indicate that CO3**2- and pCO2 threshold values for all substrate types were both exceeded, simultaneously, 13% of the time at present day atmospheric pCO2 concentrations. It is predicted that atmospheric pCO2 will exceed the average pCO2 threshold value for calcification and dissolution on the Molokai reef flat by the year 2100.
Resumo:
We analyzed strontium/calcium ratios (Sr/Ca) in four colonies of the Atlantic coral genus Montastrea with growth rates ranging from 2.3 to 12.6 mm/a. Derived Sr/Ca-sea surface temperature (SST) calibrations exhibit significant differences among the four colonies that cannot be explained by variations in SST or seawater Sr/Ca. For a single coral Sr/Ca ratio of 8.8 mmol/mol, the four calibrations predict SSTs ranging from 24.0° to 30.9°C. We find that differences in the Sr/Ca-SST relationships are correlated systematically with the average annual extension rate (ext) of each colony such that Sr/Ca (mmol/mol) = 11.82 (±0.13) - 0.058 (±0.004) * ext (mm/a) - 0.092 (±0.005) * SST (°C). This observation is consistent with previous reports of a link between coral Sr/Ca and growth rate. Verification of our growth-dependent Sr/Ca-SST calibration using a coral excluded from the calibration reconstructs the mean and seasonal amplitude of the actual recorded SST to within 0.3°C. Applying a traditional, nongrowth-dependent Sr/Ca-SST calibration derived from a modern Montastrea to the Sr/Ca ratios of a conspecific coral that grew during the early Little Ice Age (LIA) (400 years B.P.) suggests that Caribbean SSTs were >5°C cooler than today. Conversely, application of our growth-dependent Sr/Ca-SST calibration to Sr/Ca ratios derived from the LIA coral indicates that SSTs during the 5-year period analyzed were within error (±1.4°C) of modern values.
Resumo:
We studied the relationship between flower size and nectar properties of hummingbird-visited flowers in the Brazilian Atlantic Forest. We analysed the nectar volume and concentration as a function of corolla length and the average bill size of visitors for 150 plant species, using the phylogenetic generalized least squares (PGLS) to control for phylogenetic signals in the data. We found that nectar volume is positively correlated with corolla length due to phylogenetic allometry. We also demonstrated that larger flowers provide better rewards for long-billed hummingbirds. Regardless of the causal mechanisms, our results support the hypothesis that morphological floral traits that drive partitioning among hummingbirds correspond to the quantity of resources produced by the flowers in the Atlantic Forest. We demonstrate that the relationship between nectar properties and flower size is affected by phylogenetic constraints and thus future studies assessing the interaction between floral traits need to control for phylogenetic signals in the data.
Resumo:
The Pacific Decadal Oscillation (PDO), the leading mode of sea surface temperature (SST) anomalies in the extratropical North Pacific Ocean, has widespread impacts on precipitation in the Americas and marine fisheries in the North Pacific. However, marine proxy records with a temporal resolution that resolves interannual to interdecadal SST variability in the extratropical North Pacific are extremely rare. Here we demonstrate that the winter Sr/Ca and U/Ca records of an annually-banded reef coral from the Ogasawara Islands in the western subtropical North Pacific are significantly correlated with the instrumental winter PDO index over the last century. The reconstruction of the PDO is further improved by combining the coral data with an existing eastern mid-latitude North Pacific growth ring record of geoduck clams. The spatial correlations of this combined index with global climate fields suggest that SST proxy records from these locations provide potential for PDO reconstructions further back in time.