115 resultados para core-shell structure

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shells of the bivalve Arctica islandica are used to reconstruct paleo-environmental conditions (e.g. temperature) via biogeochemical proxies, i.e. biogenic components that are related closely to environmental parameters at the time of shell formation. Several studies have shown that proxies like element and isotope-ratios can be affected by shell growth and microstructure. Thus it is essential to evaluate the impact of changing environmental parameters such as high pCO2 and consequent changes in carbonate chemistry on shell properties to validate these biogeochemical proxies for a wider range of environmental conditions. Growth experiments with Arctica islandica from the Western Baltic Sea kept under different pCO2 levels (from 380 to 1120 µatm) indicate no affect of elevated pCO2 on shell growth or crystal microstructure, indicating that A. islandica shows an adaptation to a wider range of pCO2 levels than reported for other species. Accordingly, proxy information derived from A. islandica shells of this region contains no pCO2 related bias.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean acidification (OA) is beginning to have noticeable negative impact on calcification rate, shell structure and physiological energy budgeting of several marine organisms; these alter the growth of many economically important shellfish including oysters. Early life stages of oysters may be particularly vulnerable to OA-driven low pH conditions because their shell is made up of the highly soluble form of calcium carbonate (CaCO3) mineral, aragonite. Our long-term CO2 perturbation experiment showed that larval shell growth rate of the oyster species Crassostrea hongkongensis was significantly reduced at pH < 7.9 compared to the control (8.2). To gain new insights into the underlying mechanisms of low-pH-induced delays in larval growth, we have examined the effect of pH on the protein expression pattern, including protein phosphorylation status at the pediveliger larval stage. Using two-dimensional electrophoresis and mass spectrometry, we demonstrated that the larval proteome was significantly altered by the two low pH treatments (7.9 and 7.6) compared to the control pH (8.2). Generally, the number of expressed proteins and their phosphorylation level decreased with low pH. Proteins involved in larval energy metabolism and calcification appeared to be down-regulated in response to low pH, whereas cell motility and production of cytoskeletal proteins were increased. This study on larval growth coupled with proteome change is the first step toward the search for novel Protein Expression Signatures indicative of low pH, which may help in understanding the mechanisms involved in low pH tolerance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The carbonate chemistry of the surface ocean is rapidly changing with ocean acidification, a result of human activities. In the upper layers of the Southern Ocean, aragonite-a metastable form of calcium carbonate with rapid dissolution kinetics-may become undersaturated by 2050. Aragonite undersaturation is likely to affect aragonite-shelled organisms, which can dominate surface water communities in polar regions. Here we present analyses of specimens of the pteropod Limacina helicina antarctica that were extracted live from the Southern Ocean early in 2008. We sampled from the top 200 m of the water column, where aragonite saturation levels were around 1, as upwelled deep water is mixed with surface water containing anthropogenic CO2. Comparing the shell structure with samples from aragonite-supersaturated regions elsewhere under a scanning electron microscope, we found severe levels of shell dissolution in the undersaturated region alone. According to laboratory incubations of intact samples with a range of aragonite saturation levels, eight days of incubation in aragonite saturation levels of 0.94-1.12 produces equivalent levels of dissolution. As deep-water upwelling and CO2 absorption by surface waters is likely to increase as a result of human activities, we conclude that upper ocean regions where aragonite-shelled organisms are affected by dissolution are likely to expand.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.