4 resultados para coral health

em Publishing Network for Geoscientific


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA) and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate) together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm), and two temperature regimes (26.5, 29.0°C) within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53%) in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification threatens the survival of coral reef ecosystems worldwide. The negative effects of ocean acidification observed in many laboratory experiments have been seen in studies of naturally low-pH reefs, with little evidence to date for adaptation. Recently, we reported initial data suggesting that low-pH coral communities of the Palau Rock Islands appear healthy despite the extreme conditions in which they live. Here, we build on that observation with a comprehensive statistical analysis of benthic communities across Palau's natural acidification gradient. Our analysis revealed a shift in coral community composition but no impact of acidification on coral richness, coralline algae abundance, macroalgae cover, coral calcification, or skeletal density. However, coral bioerosion increased 11-fold as pH decreased from the barrier reefs to the Rock Island bays. Indeed, a comparison of the naturally low-pH coral reef systems studied so far revealed increased bioerosion to be the only consistent feature among them, as responses varied across other indices of ecosystem health. Our results imply that whereas community responses may vary, escalation of coral reef bioerosion and acceleration of a shift from net accreting to net eroding reef structures will likely be a global signature of ocean acidification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many studies have investigated the effect of an increase in pCO2 on coral calcification and photosynthesis but the physiological consequences are still relatively speculative. We investigated the effects of ocean acidification on zinc incorporation and gross calcification in the scleractinian coral Stylophora pistillata. Zn is an essential element for health and growth of corals. Colonies were maintained at normal pHT (8.1) and at two low-pH conditions (7.8 and 7.5) during 5 weeks. Corals were exposed to 65Zn dissolved in seawater to assess uptake rates of this element. After 5 weeks, 65Zn activity measured in the whole coral and in the two compartments: tissue and skeleton, differed significantly between pH conditions with concentration factors higher at pHT 8.1, compared to lower pH. Zn is therefore taken less efficiently by corals at reduced pH. Their gross calcification, as measured by 45Ca incorporation, photosynthesis and photosynthetic efficiency did not change with pH even at the lowest level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global climate change threatens coral growth and reef ecosystem health via ocean warming and ocean acidification (OA). Whereas the negative impacts of these stressors are increasingly well-documented, studies identifying pathways to resilience are still poorly understood. Heterotrophy has been shown to help corals experiencing decreases in growth due to either thermal or OA stress; however, the mechanism by which it mitigates these decreases remains unclear. This study tested the ability of coral heterotrophy to mitigate reductions in growth due to climate change stress in the critically endangered Caribbean coral Acropora cervicornis via changes in feeding rate and lipid content. Corals were either fed or unfed and exposed to elevated temperature (30°C), enriched pCO2 (800 ppm), or both (30°C/800 ppm) as compared to a control (26°C/390 ppm) for 8 weeks. Feeding rate and lipid content both increased in corals experiencing OA vs. present-day conditions, and were significantly correlated. Fed corals were able to maintain ambient growth rates at both elevated temperature and elevated CO2, while unfed corals experienced significant decreases in growth with respect to fed conspecifics. Our results show for the first time that a threatened coral species can buffer OA-reduced calcification by increasing feeding rates and lipid content.