6 resultados para contention
em Publishing Network for Geoscientific
Resumo:
During the drilling of the southern Australian continental margin (Leg 182 of the Ocean Drilling Program), fluids with unusually high salinities (to 106?) were encountered in Miocene to Pleistocene sediments. At three sites (1127, 1129, and 1131), high contents of H2S (to 15%), CH4 (50%), and CO2 (70%) were also encountered. These levels of H2S are the highest yet reported during the history of either the Deep Sea Drilling Project or the Ocean Drilling Program. The high concentrations of H2S and CH4 are associated with anomalous Na+/Cl- ratios in the pore waters. Although hydrates were not recovered, and despite the shallow water depth of these sites (200-400 m) and relative warm bottom water temperatures (11-14°C), we believe that these sites possess disseminated H2S-dominated hydrates. This contention is supported by calculations using the measured gas concentrations and temperatures of the cores, and depths of recovery. High concentrations of H2S necessary for the formation of hydrates under these conditions were provided by the abundant (SO4)2- caused by the high salinities of the pore fluids, and the high concentrations of organic material. One hypothesis for the origin of these fluids is that they were formed on the adjacent continental shelf during previous lowstands of sea level and were forced into the sediments under the influence of hydrostatic head.
Resumo:
Anthropogenic CO2 emissions are acidifying the world's oceans. A growing body of evidence demonstrates that ocean acidification can impact survival, growth, development and physiology of marine invertebrates. Here we tested the impact of long term (up to 16 months) and trans life-cycle (adult, embryo/larvae and juvenile) exposure to elevated pCO2 (1200 µatm, compared to control 400 µatm) on the green sea urchin Strongylocentrotus droebachiensis. Female fecundity was decreased 4.5 fold when acclimated to elevated pCO2 for 4 months during reproductive conditioning while no difference was observed in females acclimated for 16 months. Moreover, adult pre-exposure for 4 months to elevated pCO2, had a direct negative impact on subsequent larval settlement success. Five to nine times fewer offspring reached the juvenile stage in cultures using gametes collected from adults previously acclimated to high pCO2 for 4 months. However, no difference in larval survival was observed when adults were pre-exposed for 16 months to elevated pCO2. pCO2 had no direct negative impact on juvenile survival except when both larvae and juveniles were raised in elevated pCO2. These negative effects on settlement success and juvenile survival can be attributed to carry-over effects from adults to larvae and from larvae to juveniles. Our results support the contention that adult sea urchins can acclimate to moderately elevated pCO2 in a matter of a few months and that carry-over effects can exacerbate the negative impact of ocean acidification on larvae and juveniles.
Resumo:
We present detailed paleomagnetic and rock magnetic results of rock samples recovered during Leg 173. The Leg 173 cores display a multicomponent magnetization nature. Variations in magnetic properties correlate with changes in lithology that result from differences in the abundance and size of magnetic minerals. The combined investigation suggests that the magnetic properties of the "fresher" peridotite samples from Site 1070 are controlled mainly by titanomagnetite, with a strong Verwey transition in the vicinity of 110 K, and with field- and frequency-dependent susceptibility curves that resemble those of titanomagnetites. These results are in excellent agreement with thermomagnetic characteristics where titanomagnetites with Curie temperature ~580°C were identified from the "fresher" peridotites. In contrast to the magnetic properties observed from the "fresher" peridotites, the low-temperature curves for the "altered" peridotites did not show any Verwey transition. Thermomagnetic analysis using the high-temperature vibrating sample magnetometer also failed to show evidence for titanomagnetites. The remanent magnetization is carried by a thermally unstable mineral that breaks down at ~420°C, probably maghemite. The field- and frequency-dependent relationships are also directly opposite to those in the reversal zone, with no signs of titanomagnetite characteristics. Altogether, these rock magnetic data seem to be sensitive indicators of alteration and support the contention that maghemite is responsible for the magnetic signatures displayed in the altered peridotites of the upper section. The magnetic minerals of the basement rocks from Sites 1068, 1069, and 1070 are of variable particle size but fall within the pseudo-single-domain size range (0.2-14 µm). The average natural remanent magnetization (NRM) intensity of recovered serpenitinized peridotite is typically on the order of 20 mA/m for samples from Site 1068, but ~120 mA/m for samples from Site 1070. The much stronger magnetization intensity of Site 1070 is apparently in excellent agreement with the observed magnetic anomaly high. Nearly half of the NRM intensity remained after 400°C demagnetization, suggesting that the remanence can contribute significantly to the marine magnetic anomaly.
Resumo:
O18/O16 data on a depth profile of water samples from the Arctic Ocean reveal that near surface water is depleted in O18 by about 4 per mil, but water at depths greater than 350 meters reaches near normal open ocean water composition. The O18 profile very closely follows the salinity profile, with deltaO18 changing by about 0.8 per mil per 1 per mil salinity change. The results of deltaO18 measurements on the pelagic species Globigerina pachyderma from a composite core show that the deltaO18 value has not changed since the latter part of the last glacial period. This constancy we take to indicate that the temperature and the deltaO18 value of the water in which these foraminifera grew have not changed significantly since that time. Such a conclusion seems to imply that the present ice coverage in the Arctic Ocean has remained unchanged during the last 25,000 years. However, the deltaO18 value of benthonic foraminifera shows a shift of 1.2 per mil between the end of the last glacial period and the present warm period. This shift is consistent with the idea that the deep water mass of the Arctic Ocean is formed outside the Arctic basin. The information on the deltaO18 value of the benthonic foraminifera from the top of the core was used in conjunction with the data on deltaO18 and temperature of the bottom water to establish the constant in the empirical equation relating deltaO18 values to temperature for the preparation procedure used in our laboratory. Based on this calibration, the data confirm A. W. H. Bé's contention (personal communication, 1960) that G. pachyderma incorporates about one-half of its CaCO3 below 300 meters.
Resumo:
1. Desmoscolecida from the continental slope and the deep-sea bottom (59-4354 m) off the Portuguese and Moroccan coasts are described. 18 species were identified: Desmoscolex bathyalis sp. nov., D. chaetalatus sp. nov., D. eftus sp. nov., D. galeatus sp. nov., D. lapilliferus sp. nov., D. longisetosus Timm, 1970, D. lorenzeni sp. nov., D. perspicuus sp. nov., D. pustulatus sp. nov., Quadricoma angulocephala sp. nov., Q. brevichaeta sp. nov., Q. iberica sp. nov., Q. loricatoides sp. nov., Tricoma atlantica sp. nov., T. bathycola sp. nov., T. beata sp. nov., T. incomposita sp. nov., T. meteora sp. nov., T. mauretania sp. nov. 2. The following new terms are proposed: "Desmos" (ring-shaped concretions consisting of secretion and concretion particles), "desmoscolecoid" and "tricomoid" arrangement of the somatic setae, "regelmaessige" (regular), "unregelmaessige" (irregular), "vollstaendige" (complete) and "unvollstaendige" (incomplete) arrangement of somatic seta (variations in the desmoscolecoid arrangement of the somatic setae). The length of the somatic setae is given in the setal pattern. 3. Desmoscolecida identical as to genus and species exhibit no morphological differences even if forthcoming from different bathymetrical zones (deep sea, sublitoral, litoral) or different environments (marin, freshwater, coastal subsoil water, terrestrial environment). 4. Lorenzen's (1969) contention that thearrangement of the somatic setae is more significant for the natural relationships between the different genera of Desmoscolecida than other characteristics is further confirmed. Species with tricomoid arrangement of somatic setae are regarded as primitive, species with desmoscolecoid arrangement of somatic setae are regarded as more advanced. 5. Three new genus are established: Desmogerlachia gen. nov., Desmolorenzenia gen. nov. and Desmofimmia gen. nov. - Protricoma Timm, 1970 is synonymized with Paratricoma Gerlach, 1964 and Protodesmoscolex Timm, 1970 is synonymized with Desmoscolex Claparede,1863. 6. Checklists of all species of the order Desmoscolecida and keys to species of the subfamilies Tricominae and Desmoscolecinae are provided. 7. The following nomenclatorial changes are suggested: Desmogerlachia papillifer (Gerlach, 1956) comb. nov., D .pratensis (Lorenz, 1969) comb. nov., Desmotimmia mirabilis (Timm, 1970) comb. nov., Paratricoma squamosa (Timm, 1970) comb. nov., Desmolorenzenia crassicauda (Timm, 1970) comb. nov., D. desmoscolecoides (Timm, 1970) comb. nov., D. eurycricus (Filipjev, 1922) comb. nov., D. frontalis (Gerlach, 1952) comb. nov., D. hupferi (Steiner, 1916) comb. nov., D. longicauda (Timm, 1970) comb. nov., D. parva (Timm, 1970) comb. nov., D. platycricus (Steiner, 1916) comb. nov., D. viffata (Lorenzen, 1969) comb. nov., Desmoscolex anfarcficos (Timm, 1970) comb. nov.
Resumo:
A record of Pb isotopic compositions and Pb and Ba concentrations are presented for the EPICA Dome C ice core covering the past 220 ky, indicating the characteristics of dust and volcanic Pb deposition in central East Antarctica. Lead isotopic compositions are also reported in a suite of soil and loess samples from the Southern Hemisphere (Australia, Southern Africa, Southern South America, New Zealand, Antarctica) in order to evaluate the provenance of dust present in Antarctic ice. Lead isotopic compositions in Dome C ice support the contention that Southern South America was an important source of dust in Antarctica during the last two glacial maxima, and furthermore suggest occasional dust contributions from local Antarctic sources. The isotopic signature of Pb in Antarctic ice is altered by the presence of volcanic Pb, inhibiting the evaluation of glacial-interglacial changes in dust sources and the evaluation of Australia as a source of dust to Antarctica. Consequently, an accurate evaluation of the predominant source(s) of Antarctic dust can only be obtained from glacial maxima, when dust-Pb concentrations were greatest. These data confirm that volcanic Pb is present throughout Antarctica and is emitted in a physical phase that is free from Ba, while dust Pb is transported within a matrix containing Ba and other crustal elements.