2 resultados para consistent individual differences

em Publishing Network for Geoscientific


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Analysis of 944 single specimens of three species of late Maastrichtian planktonic foraminifera (Racemiguembelina fructicosa, Contusotruncana contusa, and Rugoglobigerina rugosa) from 38 samples spanning the last 3 Myr of the Cretaceous shows consistent isotopic trends through time, consistent isotopic differences among taxa, and high within-sample isotopic variability throughout. Within-sample variability does not change systematically through time for any taxon, but average d18O values decrease by approx. 1.5 per mill, and average d13C values diverge up section. Comparing taxa, average d18O values are similar within most samples, but average d13C values generally decrease from R. fructicosa to R. rugosa to C. contusa. In addition, the within-sample variability of individual d13C measurements is larger for R. fructicosa than for either C. contusa or R. rugosa, an observation which is consistent with a photosymbiotic habitat for R. fructicosa. In terms of Maastrichtian paleoceanography the negative d18O trend of approx. 1.5 per mill corresponds to a temperature increase of approx. 6°C, and the divergence of d13C values up section suggests an increasingly stratified water column in the western Atlantic through the late Maastrichtian. We suggest that these trends are best explained by increasing import of South Atlantic waters into the North Atlantic and an intensification of the Northern Hemisphere polar front.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Measurements of Sr/Ca of benthic foraminifera show a linear decrease with water depth which is superimposed upon significant variability identified by analyses of individual foraminifera. New data for Cd/Ca support previous work in defining a contrast between waters shallower and deeper than ~2500 m. Measured element partition coefficients in foraminiferal calcium carbonate relative to sea water (D) have been described by means of a one-box model in which elements are extracted by Rayleigh distillation from a biomineralization reservoir that serves for calcification with a constant fractionation factor (alpha), such that D = (1 - f**alpha)/(l - f), where f is the proportion of Ca remaining after precipitation. A modification to the model recognises differences in element speciation. The model is consistent with differences between D[Sr], D[Ba], and D[Cd] in benthic but not planktonic foraminifera. Depth variations in D for Sr and Ba are consistent with the model, as are differences in depth variation of D[Cd] in calcitic and aragonitic benthic foraminifera. The shallower depth variations may reflect increasing calcification rates with increasing water depth to an optimum of about 2500 m. Observations of unusually lower DCd for some deep waters, not accompanied by similar [Sr], or D[Ba] may be because of dissolution or a calcification response to a lower carbonate saturation state.