2 resultados para computer based experiments
em Publishing Network for Geoscientific
Resumo:
Rising atmospheric CO2 concentrations will significantly reduce ocean pH during the 21st century (ocean acidification, OA). This may hamper calcification in marine organisms such as corals and echinoderms, as shown in many laboratory-based experiments. Sea urchins are considered highly vulnerable to OA. We studied an Echinometra species on natural volcanic CO2 vents in Papua New Guinea, where they are CO2-acclimatized and also subjected to secondary ecological changes from elevated CO2. Near the vent site, the urchins experienced large daily variations in pH (> 1 unit) and pCO2 (> 2000 ppm) and average pH values (pHT 7.73) much below those expected under the most pessimistic future emission scenarios. Growth was measured over a 17-month period using tetracycline tagging of the calcareous feeding lanterns. Average-sized urchins grew more than twice as fast at the vent compared with those at an adjacent control site, and assumed larger sizes at the vent compared to the control site and two other sites at another reef near-by. A small reduction in gonad weight was detected at the vents, but no differences in mortality, respiration, or degree of test calcification were detected between urchins from vent and control populations. Thus, urchins did not only persist but actually 'thrived' under extreme CO2 conditions. We suggest an ecological basis for this response: increased algal productivity under increased pCO2 provided more food at the vent, resulting in higher growth rates. The wider implication of our observation is that laboratory studies on non-acclimatized specimens, which typically do not consider ecological changes, can lead to erroneous conclusions on responses to global change.
Resumo:
Culture and mesocosm experiments are often carried out under high initial nutrient concentrations, yielding high biomass concentrations that in turn often lead to a substantial build-up of DOM. In such experiments, DOM can reach concentrations much higher than typically observed in the open ocean. To the extent that DOM includes organic acids and bases, it will contribute to the alkalinity of the seawater contained in the experimental device. Our analysis suggests that whenever substantial amounts of DOM are produced during the experiment, standard computer programmes used to compute CO2 fugacity can underestimate true fCO2 significantly when the computation is based on AT and CT. Unless the effect of DOM-alkalinity can be accounted for, this might lead to significant errors in the interpretation of the system under consideration with respect to the experimentally applied CO2 perturbation. Errors in the inferred fCO2 can misguide the development of parameterisations used in simulations with global carbon cycle models in future CO2-scenarios. Over determination of the CO2-system in experimental ocean acidification studies is proposed to safeguard against possibly large errors in estimated fCO2.