173 resultados para compound 48-80
em Publishing Network for Geoscientific
Resumo:
Leg 94 Sites are located in a large geographic area of the northeastern Atlantic. Clay mineral analyses of the sediments recovered on Leg 94 (Eocene to the present), together with results obtained from previous DSDP legs (47B, 48, 80, 81, 82), provide greater insight into the paleoenvironmental evolution of the northeastern Atlantic. The characteristics of Eocene clay sediments are regional, reflecting, in the absence of strong bottom currents, the influence of neighboring petrographic environments: basic volcanic rocks (Sites 403-406, 552, and 608) and acid volcanic rocks (Sites 508 to 510). During the Oligocene, atmospheric circulation patterns left their mineralogical signatures in the southern part of the area investigated (Sites 558 and 608), whereas during the Miocene the intrusion of northern water masses led to the gradual homogenization of the clay sedimentation throughout the North Atlantic. In the late Pliocene, input from glacial sources became widespread.
Resumo:
A growing body of geologic evidence suggests that emplacement of the North Atlantic Igneous Province (NAIP) played a major role in global warming during the early Paleogene as well as in the transient Paleocene-Eocene thermal maximum (PETM) event. A ~5 million year record of major and trace element abundances spanning 56 to 51 Ma at Deep Sea Drilling Project Sites 401 and 549 confirms that the majority of NAIP volcanism occurred as subaerial flows. Thus the trace element records provide constraints on the nature and scope of the environmental impact of the NAIP during the late Paleocene-early Eocene interval. Subaerial volcanism would have injected mantle CO2 directly into the atmosphere, resulting in a more immediate increase in atmospheric greenhouse gas abundances than CO2 input through submarine volcanism. The lack of significant hydrothermalism contradicts recently proposed mechanisms for thermally destabilizing methane hydrate reservoirs during the PETM. Any connection between NAIP volcanism and PETM warming had to occur through the atmosphere.
Resumo:
Three lower Barremian to middle/upper Cenomanian samples from DSDP Hole 549 and three lower Cenomanian to lower Maestrichtian samples from DSDP Hole 550B were investigated by organic geochemical and organic petrographic methods. The samples came from wells drilled in the area of the Goban Spur in the northeastern Atlantic; they represent gray to greenish gray carbonaceous mud or siltstones from the deeper parts of the Cretaceous sequences penetrated and light-colored chalks from the shallower ones. The total amount of organic carbon is below 1% in all samples; it is especially low in the Cenomanian to Maestrichtian chalks. Terrigenous organic matter predominates; only the Barremian sample shows a moderate number of marine phytoclasts. As indicated by several parameters, the maturity of the organic matter is low, corresponding to about 0.4% vitrinite reflectance.
Resumo:
X-ray powder diffraction and optical and scanning-electron microscope analyses of sediment samples taken from four sites drilled in the Goban Spur area of the northeast Atlantic show variable diagenetic silicification of sediments at several stratigraphic horizons. The results are as follows: 1. The silicified sediments are middle Eocene at Site 548, Paleocene to lower Albian at Site 549, upper to lower Paleocene at Site 550, and lower Turanian at Site 551. 2. There are three types of these silicified sediments: nodular type in carbonate-rich host sediments, bedded type in clayey host sediments, and a type transitional between the other two. 3. Silica diagenesis is considered to progress as follows: dissolution of siliceous fossils; precipitation of opal CT in pore spaces and transformation of biogenic silica (opal A) to opal CT, development of opal CT cement; chalcedonic quartz precipitation in pore spaces and replacement of foraminiferal tests by chalcedonic quartz; and finally, transformation of opal CT to quartz, and cementation. But the strong influence of host-sediment types on diagenetic silica fades is recognized. Bedded-type silicified sediments in a clayey environment indicate a lower grade of silica diagenesis. Only very weak chalcedonic quartz formation is recognized, and there is no opal CT cementation, even in Lower Cretaceous bedded-type clayey silicified sediments. 4. The rf(101) spacing of opal CT shows two distinct trends of ordering or decrease with burial depth; one is a rapid change, in the case of nodular silicified sediments, and the other is a more gentle shift, found in bedded silicified sediments. 5. Diagenetic silica facies of the nodular type develop as irregular concentric zones around some nodule nuclei. Also, quartz-chert nodule formation occurs at rather shallower horizons, and is discordant with the trend of decreasing d(101) spacing in opal CT. 6. Silicified sediments at Site 551 are shallower than at the other sites. The diagenetic silica facies suggest the probable erosion of 300 m or more of sediment at this site. 7. The zeolites clinoptilolite and phillipsite were found in the sediment samples recovered on Leg 80. Clinoptilolite occurs from the shallower levels to the deepest horizons of diagenetically silicified zones, suggesting that clinoptilolite formation is related to diagenesis of biogenic silica. Phillipsite at Site 551 (Section 551-5-2) may originate from volcanogenie material.