5 resultados para complexity in spatiotemporal evolution

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ferromanganese micro- and macronodules in eupelagic clays at Site AKO26-35 in the Southwest Pacific Basin were studied in order to check REE distribution during ferromanganese ore formation in non-productive zones of the Pacific Ocean. Host sediments and their labile fraction, ferromanganese micronodules (in size fractions 50-100, 100-250, 250-500, and >500 ?m) from eupelagic clays (horizons 37-10, 105-110, 165-175, and 189-190 cm), and buried ferromanganese micronodules (horizons 64-68, 158-159, and 165-166 cm) were under study. Based on partition analysis data anomalous REE enrichment in eupelagic clays from Site AKO26-35 is related to accumulation of rare earth elements in iron hydroxophosphates. Concentration of Ce generally bound with manganese oxyhydroxides is governed by oxidation of Mn and Ce in ocean surface waters. Micronodules (with Mn/Fe from 0.7 to 1.6) inherit compositional features of the labile fraction of bottom sediments. Concentrations of Ce, Co, and Th depend on micronodule sizes. Enrichment of micronodules in hydrogenic or hydrothermal matter is governed by their sizes and by a dominant source of suspended oxyhydroxide material. The study of buried ferromanganese micronodules revealed general regularities in compositional evolution of oxyhydroxide matrices of ferromanganese micro- and macronodules. Compositional variation of micro- and macronodules relative to the labile fraction of sediments in the Pacific non-productive zone dramatically differs from the pattern in bioproductive zones where micronodule compositions in coarser fractions are similar to those in associated macronodules and labile fractions of host sediments due to more intense suboxidative diagenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of radiolarian assemblages from Core MD 962086 provides new information on the variability in the upwelling intensity and origin of upwelled water masses over the past 350 ky in one of the major filamentous regions of the Benguela Upwelling System (BUS), located off Lüderitz, Namibia. The use of key radiolarian species to trace the source of upwelled waters, and the use of a radiolarian-based upwelling index (URI) to reconstruct the upwelling intensity represent the first use of radiolarians for paleoceanographic reconstructions in the BUS. These radiolarian-based proxies indicate strongest upwelling during Marine Isotope Stages (MIS) 3, 5, and 8, which compares well with other studies. While during MIS 3 and 8, the radiolarian-based proxies indicate the influx of waters of Southern Ocean origin, they also point to the increased influence of tropical waters during the lower portion of MIS 5. During MIS 2, 4 and 6 the radiolarian assemblages indicate generally lower upwelling intensities, although this signal is complicated by the increased occurrence of organic carbon in the sediments during these intervals. During MIS 2 there appears to be less of an input of Southern Ocean waters to the BUS, although during the also glacial MIS 4 and 6, there is evidence for an increased influence of cold Antarctic waters. The comparison of the results from Core MD 962086 with other studies in the BUS area indicates a non-uniform pattern of upwelling intensity and advection of cold, southern waters into this system during MIS 2. Weaker upwelling signaled by the radiolarian-based proxy in MIS 4 is in contrast to other studies that indicate higher productivity during this time period. In general, the data show that there is a strong spatiotemporal complexity in upwelling intensity in the BUS and that the advection of water into it is not strongly tied to glacial-interglacial variations in climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Miocene paleoceanographic evolution exhibits major changes resulting from the opening and closing of passages, the subsequent changes in oceanic circulation, and development of major Antarctic glaciation. The consequences and timing of these events can be observed in variations in the distribution of deep-sea hiatuses, sedimentation patterns, and biogeographic distribution of planktic organisms. The opening of the Drake Passage in the latest Oligocene to early Miocene (25-20 Ma) resulted in the establishment of the deep circumpolar current, which led to thermal isolation of Antarctica and increased global cooling. This development was associated with a major turnover in planktic organisms, resulting in the evolution of Neogene assemblages and the eventual extinction of Paleogene assemblages. The erosive patterns of two widespread hiatuses (PH, 23.0-22.5 Ma; and NH 1, 20-18 Ma) indicate that a deep circumequatorial circulation existed at this time, characterized by a broad band of carbonate-ooze deposition. Siliceous sedimentation was restricted to the North Atlantic and a narrow band around Antarctica. A major reorganization in deep-sea sedimentation and hiatus distribution patterns occurred near the early/middle Miocene boundary, apparently resulting from changes in oceanic circulation. Beginning at this time, deep-sea erosion occurred throughout the Caribbean (hiatus NH 2, 16-15 Ma), suggesting disruption of the deep circumequatorial circulation and northward deflection of deep currents, and/or intensification of the Gulf Stream. Sediment distribution patterns changed dramatically with the sudden appearance of siliceous-ooze deposition in the marginal and east equatorial North Pacific by 16.0 to 15.5 Ma, coincident with the decline of siliceous sedimentation in the North Atlantic. This silica switch may have been caused by the introduction of Norwegian Overflow Water into the North Atlantic acting as a barrier to outcropping of silica-rich Antarctic Bottom Water. The main aspects of the present oceanic circulation system and sediment distribution pattern were established by 13.5 to 12.5 Ma (hiatus NH 3), coincident with the establishment of a major East Antarctic ice cap. Antarctic glaciation resulted in a broadening belt of siliceous-ooze deposition around Antarctica, increased siliceous sedimentation in the marginal and east equatorial North Pacific and Indian Oceans, and further northward restriction of siliceous sediments in the North Atlantic. Periodic cool climatic events were accompanied by lower eustatic sea levels and widespread deep-sea erosion at 12 to 11 Ma (NH 4), 10 to 9 Ma (NH 5), 7.5 to 6.2 Ma (NH 6), and 5.2 to 4.7 Ma (NH 7).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selection of metrics for ecosystem restoration programs is critical for improving the quality of monitoring programs and characterizing project success. Moreover it is oftentimes very difficult to balance the importance of multiple ecological, social, and economical metrics. Metric selection process is a complex and must simultaneously take into account monitoring data, environmental models, socio-economic considerations, and stakeholder interests. We propose multicriteria decision analysis (MCDA) methods, broadly defined, for the selection of optimal sets of metrics to enhance evaluation of ecosystem restoration alternatives. Two MCDA methods, a multiattribute utility analysis (MAUT), and a probabilistic multicriteria acceptability analysis (ProMAA), are applied and compared for a hypothetical case study of a river restoration involving multiple stakeholders. Overall, the MCDA results in a systematic, unbiased, and transparent solution, informing restoration alternatives evaluation. The two methods provide comparable results in terms of selected metrics. However, because ProMAA can consider probability distributions for weights and utility values of metrics for each criteria, it is suggested as the best option if data uncertainty is high. Despite the increase in complexity in the metric selection process, MCDA improves upon the current ad-hoc decision practice based on the consultations with stakeholders and experts, and encourages transparent and quantitative aggregation of data and judgement, increasing the transparency of decision making in restoration projects. We believe that MCDA can enhance the overall sustainability of ecosystem by enhancing both ecological and societal needs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The late Eocene through earliest Miocene stable-isotope composition of southwest Pacific microfossils has been examined in a traverse of high-quality sedimentary sequences ranging from subantarctic (DSDP Site 277) through temperate regions (DSDP Sites 592 and 593). Changes in oxygen-isotope values, measured in benthic and planktonic foraminifers, document the Oligocene development and strengthening of latitudinal thermal zonation from water masses with broad temperature gradients during the Eocene to the steeper gradients and more distinct latitudinally distributed surface water-mass belts of the Neogene. The oxygen-isotope records can be divided into three intervals: late Eocene, early Oligocene, and middle to late Oligocene. Each interval represents a successive stage in the evolution of latitudinal thermal gradients between subantarctic and temperate regions in the Southern Hemisphere. During the late Eocene, oxygen-isotope values at subantarctic Site 277 were similar to those at temperate Sites 592 and 593. The isotope values suggest that, although the inferred paleotemperatures at Site 277 are slightly cooler on average than those at the temperate sites, there is no evidence for a major thermal boundary between the regions at this time. All three sites record the well-known oxygen-isotope enrichment of about 1 per mil in both planktonic and benthic foraminifers in close association with the Eocene/Oligocene boundary. In contrast to the earliest Oligocene enrichments in the planktonic and benthic oxygen-isotope composition at Site 277, more northern Sites 592 and 593 exhibit a depletion through the early-middle Oligocene. This documents the beginning of thermal segregation as subantarctic waters cooled relative to those at temperate latitudes. During the Oligocene, this surface-water differentiation continued, as measured by planktonic d18O values. The oxygen-isotope records of the benthic foraminifers also began to diverge in the earliest Oligocene. The most enriched oxygen-isotope values in all records cluster in the middle Oligocene, marked by oscillating episodes of enrichments >0.5 per mil occurring most prominently in the subantarctic record of Site 277. These values can be interpreted as recording either the coldest oceanic temperatures of the Paleogene and/or accumulations of Antarctic ice. After this interval, latitudinal thermal differentiation developed rapidly during the middle Oligocene, especially in the surface waters which actually warmed in temperate areas. If the enriched Oligocene oxygen-isotope values indicate that ice had accumulated, this ice must have disappeared by the early Miocene, when depleted oxygen-isotope values suggest very warm conditions. The data presented in this chapter document the progressive increase of latitudinal temperature gradients from the late Eocene through the late Oligocene. This pattern of increasing isotopic offset between latitudinally distributed southwest Pacific sites is linked to the establishment and strengthening of the Circum-Antarctic Current, previously considered to have developed during the middle to late Oligocene. The intensification of this current system progressively decoupled the warm subtropical gyres from cool polar circulation, in turn leading to increased Antarctic glaciation.