5 resultados para compensating

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stable isotopes of sedimentary nitrogen and organic carbon are widely used as proxy variables for biogeochemical parameters and processes in the water column. In order to investigate alterations of the primary isotopic signal by sedimentary diagenetic processes, we determined concentrations and isotopic compositions of inorganic nitrogen (IN), organic nitrogen (ON), total nitrogen (TN), and total organic carbon (TOC) on one short core recovered from sediments of the eastern subtropical Atlantic, between the Canary Islands and the Moroccan coast. Changes with depth in concentration and isotopic composition of the different fractions were related to early diagenetic conditions indicated by pore water concentrations of oxygen, nitrate, and ammonium. Additionally, the nature of the organic matter was investigated by Rock-Eval pyrolysis and microscopic analysis. A decrease in ON during aerobic organic matter degradation is accompanied by an increase of the 15N/14N ratio. Changes in the isotopic composition of ON can be described by Rayleigh fractionation kinetics which are probably related to microbial metabolism. The influence of IN depleted in 15N on the bulk sedimentary (TN) isotope signal increases due to organic matter degradation, compensating partly the isotopic changes in ON. In anoxic sediments, fixation of ammonium between clay lattices results in a decrease of stable nitrogen isotope ratio of IN and TN. Changes in the carbon isotopic composition of TOC have to be explained by Rayleigh fractionation in combination with different remineralization kinetics of organic compounds with different isotopic composition. We have found no evidence for preferential preservation of terrestrial organic carbon. Instead, both TOC and refractory organic carbon are dominated by marine organic matter. Refractory organic carbon is depleted in 13C compared to TOC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomass of seston in the surface layers of coastal waters off Namibia reaches 1 g/m**2 and decreases with distance from the shore. Two regions of high seston biomass, one northern and one southern, are distinguished. A subsurface maximum of seston biomass, presumably coinciding with the stream of compensating countercurrent, is identified in the 200-500 m layer. Similar vertical distribution of plankton is known in upwelling areas of the eastern shores of the Atlantic and Pacific Oceans and in several other ocean areas, such as the area of the Kuril-Kamchatka Trench. This fact probably indicates that life cycles of pelagic animal forms of various taxonomic groups that inhabit them and phases of their ontogenic migrations are similar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies were carried out in the northeastern Sea of Okhotsk, in the zone of interaction of the West Kamchatka and Compensating Currents at the beginning of spring seasonal succession from March 23 to April 14,1998. Samples for analysis of pigmentary and species compositions of phytoplankton were taken from the sea surface layer, depth 0.5 m. To reduce influence of micropatchiness on phytoplankon distribution at each station subsamples 0.7-1 l were collected every 50-100 m. These subsamples were used to make integral samples 4.5-8.0 l. Phytoplankton biomass and concentration of chlorophyll a varied from 18.7 to 490.9 mg/m**3 and from 0.129 to 2.422 mg/m**3, respectively. Total concentration of phytoplankton pigments varied from 0.622 to 6.679 mg/m**3. In samples studied 51 species of microalgae from 5 orders were found. In terms of the number of species, Bacillariophyta (31 species) and Dinophyta (15 species) prevailed. Diatomaceous algae make up more than 80% of the total phytoplankton biomass in waters of the Compensating Current, from 50 to 80% in intermediate waters, and less than 50% in waters of the West Kamchatka Current. Phytoplankton populations consisting primarily of diatoms were characterized by very low chlorophyll a to biomass ratio (0.1 %). It is three times lower than the ratio observed in phytoplankton populations that were close by species composition and size composition in this area in the late April-early May 1996.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The waters passing through the Florida Straits today reflect both the western portion of the wind-driven subtropical gyre and the northward flow of the upper waters which cross the equator, compensating North Atlantic Deep Water export as part of the large-scale Atlantic meridional overturning circulation. It has been postulated from various lines of evidence that the overturning circulation was weaker during the Younger Dryas cold event of the last deglaciation. We show here that the contrast in the oxygen isotopic composition of benthic foraminiferal tests across the Florida Current is reduced during the Younger Dryas. This most likely reflects a decrease in the density gradient across the channel and a decrease in the vertical shear of the Florida Current. This reduced shear is consistent with the postulated reduction in the Atlantic meridional overturning circulation. We find that the onset of this change in density structure and flow at the start of the Younger Dryas is very abrupt, occurring in less than 70 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modern Atlantic Ocean, dominated by the interactions of North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW), plays a key role in redistributing heat from the Southern to the Northern Hemisphere. In order to reconstruct the evolution of the relative importance of these two water masses, the NADW/AABW transition, reflected by the calcite lysocline, was investigated by the Globigerina bulloides dissolution index (BDX?). The depth level of the Late Glacial Maximum (LGM) calcite lysocline was elevated by several hundred metres, indicating a more corrosive water mass present at modern NADW level. Overall, the small range of BDX? data and the gradual decrease in preservation below the calcite lysocline point to a less stratified Atlantic Ocean during the LGM. Similar preservation patterns in the West and East Atlantic demonstrate that the modern west-east asymmetry did not exist due to an expansion of southern deep waters compensating for the decrease in NADW formation.