2 resultados para comovement of output and inflation

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hominid evolution in the late Miocene has long been hypothesized to be linked to the retreat of the tropical rainforest in Africa. One cause for the climatic and vegetation change often considered was uplift of Africa, but also uplift of the Himalaya and the Tibetan Plateau was suggested to have impacted rainfall distribution over Africa. Recent proxy data suggest that in East Africa open grassland habitats were available to the common ancestors of hominins and apes long before their divergence and do not find evidence for a closed rainforest in the late Miocene. We used the coupled global general circulation model CCSM3 including an interactively coupled dynamic vegetation module to investigate the impact of topography on African hydro-climate and vegetation. We performed sensitivity experiments altering elevations of the Himalaya and the Tibetan Plateau as well as of East and Southern Africa. The simulations confirm the dominant impact of African topography for climate and vegetation development of the African tropics. Only a weak influence of prescribed Asian uplift on African climate could be detected. The model simulations show that rainforest coverage of Central Africa is strongly determined by the presence of elevated African topography. In East Africa, despite wetter conditions with lowered African topography, the conditions were not favorable enough to maintain a closed rainforest. A discussion of the results with respect to other model studies indicates a minor importance of vegetation-atmosphere or ocean-atmosphere feedbacks and a large dependence of the simulated vegetation response on the land surface/vegetation model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climatic changes are most pronounced in northern high latitude regions. Yet, there is a paucity of observational data, both spatially and temporally, such that regional-scale dynamics are not fully captured, limiting our ability to make reliable projections. In this study, a group of dynamical downscaling products were created for the period 1950 to 2100 to better understand climate change and its impacts on hydrology, permafrost, and ecosystems at a resolution suitable for northern Alaska. An ERA-interim reanalysis dataset and the Community Earth System Model (CESM) served as the forcing mechanisms in this dynamical downscaling framework, and the Weather Research & Forecast (WRF) model, embedded with an optimization for the Arctic (Polar WRF), served as the Regional Climate Model (RCM). This downscaled output consists of multiple climatic variables (precipitation, temperature, wind speed, dew point temperature, and surface air pressure) for a 10 km grid spacing at three-hour intervals. The modeling products were evaluated and calibrated using a bias-correction approach. The ERA-interim forced WRF (ERA-WRF) produced reasonable climatic variables as a result, yielding a more closely correlated temperature field than precipitation field when long-term monthly climatology was compared with its forcing and observational data. A linear scaling method then further corrected the bias, based on ERA-interim monthly climatology, and bias-corrected ERA-WRF fields were applied as a reference for calibration of both the historical and the projected CESM forced WRF (CESM-WRF) products. Biases, such as, a cold temperature bias during summer and a warm temperature bias during winter as well as a wet bias for annual precipitation that CESM holds over northern Alaska persisted in CESM-WRF runs. The linear scaling of CESM-WRF eventually produced high-resolution downscaling products for the Alaskan North Slope for hydrological and ecological research, together with the calibrated ERA-WRF run, and its capability extends far beyond that. Other climatic research has been proposed, including exploration of historical and projected climatic extreme events and their possible connections to low-frequency sea-atmospheric oscillations, as well as near-surface permafrost degradation and ice regime shifts of lakes. These dynamically downscaled, bias corrected climatic datasets provide improved spatial and temporal resolution data necessary for ongoing modeling efforts in northern Alaska focused on reconstructing and projecting hydrologic changes, ecosystem processes and responses, and permafrost thermal regimes. The dynamical downscaling methods presented in this study can also be used to create more suitable model input datasets for other sub-regions of the Arctic.