10 resultados para common factor models

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A limiting factor in the accuracy and precision of U/Pb zircon dates is accurate correction for initial disequilibrium in the 238U and 235U decay chains. The longest-lived-and therefore most abundant-intermediate daughter product in the 235U isotopic decay chain is 231Pa (T1/2 = 32.71 ka), and the partitioning behavior of Pa in zircon is not well constrained. Here we report high-precision thermal ionization mass spectrometry (TIMS) U-Pb zircon data from two samples from Ocean Drilling Program (ODP) Hole 735B, which show evidence for incorporation of excess 231Pa during zircon crystallization. The most precise analyses from the two samples have consistent Th-corrected 206Pb/238U dates with weighted means of 11.9325 ± 0.0039 Ma (n = 9) and 11.920 ± 0.011 Ma (n = 4), but distinctly older 207Pb/235U dates that vary from 12.330 ± 0.048 Ma to 12.140 ± 0.044 Ma and 12.03 ± 0.24 to 12.40 ± 0.27 Ma, respectively. If the excess 207Pb is due to variable initial excess 231Pa, calculated initial (231Pa)/(235U) activity ratios for the two samples range from 5.6 ± 1.0 to 9.6 ± 1.1 and 3.5 ± 5.2 to 11.4 ± 5.8. The data from the more precisely dated sample yields estimated DPazircon/DUzircon from 2.2-3.8 and 5.6-9.6, assuming (231Pa)/(235U) of the melt equal to the global average of recently erupted mid-ocean ridge basaltic glasses or secular equilibrium, respectively. High precision ID-TIMS analyses from nine additional samples from Hole 735B and nearby Hole 1105A suggest similar partitioning. The lower range of DPazircon/DUzircon is consistent with ion microprobe measurements of 231Pa in zircons from Holocene and Pleistocene rhyolitic eruptions (Schmitt (2007; doi:10.2138/am.2007.2449) and Schmitt (2011; doi:10.1146/annurev-earth-040610-133330)). The data suggest that 231Pa is preferentially incorporated during zircon crystallization over a range of magmatic compositions, and excess initial 231Pa may be more common in zircons than acknowledged. The degree of initial disequilibrium in the 235U decay chain suggested by the data from this study, and other recent high precision datasets, leads to resolvable discordance in high precision dates of Cenozoic to Mesozoic zircons. Minor discordance in zircons of this age may therefore reflect initial excess 231Pa and does not require either inheritance or Pb loss.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accumulation rates for the five sites drilled during Leg 74 of the Glomar Challenger are presented on a common timescale based on calibration of datum levels to paleomagnetic records in Leg 74 sediments for the Paleogene, and a new compilation by Berggren et al. (1985), for the Neogene, and using the seafloor-spreading magnetic anomaly timescale of Kent (1985). We present data on accumulation of total sediment, of foraminifers, of the noncarbonate portion, and of fish teeth that give a history of productivity, winnowing, carbonate dissolution, and nonbiogenic input to what was then a part of the South Atlantic at about 30 deg S.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study focuses on the present-day surface elevation of the Greenland and Antarctic ice sheets. Based on 3 years of CryoSat-2 data acquisition we derived new elevation models (DEMs) as well as elevation change maps and volume change estimates for both ice sheets. Here we present the new DEMs and their corresponding error maps. The accuracy of the derived DEMs for Greenland and Antarctica is similar to those of previous DEMs obtained by satellite-based laser and radar altimeters. Comparisons with ICESat data show that 80% of the CryoSat-2 DEMs have an uncertainty of less than 3 m ± 15 m. The surface elevation change rates between January 2011 and January 2014 are presented for both ice sheets. We compared our results to elevation change rates obtained from ICESat data covering the time period from 2003 to 2009. The comparison reveals that in West Antarctica the volume loss has increased by a factor of 3. It also shows an anomalous thickening in Dronning Maud Land, East Antarctica which represents a known large-scale accumulation event. This anomaly partly compensates for the observed increased volume loss of the Antarctic Peninsula and West Antarctica. For Greenland we find a volume loss increased by a factor of 2.5 compared to the ICESat period with large negative elevation changes concentrated at the west and southeast coasts. The combined volume change of Greenland and Antarctica for the observation period is estimated to be -503 ± 107 km**3/yr. Greenland contributes nearly 75% to the total volume change with -375 ± 24 km**3/yr.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abundance variations of six Pliocene species of discoasters have been analyzed over the time interval from 1.89 to 2.95 Ma at five contrasting sites in the North Atlantic: Deep Sea Drilling Project Sites 552 (56°N) and 607 (41°N) and Ocean Drilling Program 658 (20°N), 659 (18°N), and 662 (1°S). A sampling interval equivalent to approximately 3 k.y. was used. Total Discoaster abundance showed a reduction with increasing latitude and from the effects of upwelling. This phenomenon is most obvious in Discoaster brouweri, the only species that survived over the entire time interval studied. Prior to 2.38 Ma, Discoaster pentaradiatus and Discoaster surculus are important components of the Discoaster assemblage: Discoaster pentaradiatus increases slightly with latitude up to 41°N, and its abundance relative to D. brouweri increases up to 56°N; D. surculus increases in abundance with latitude and with upwelling conditions relative to both D. brouweri and D. pentaradiatus and is dominant to the latter species at upwelling Site 658 and at the highest latitude sites. Discoaster asymmetricus and Discoaster tamalis appear to increase in abundance with latitude relative to D. brouweri. Many of the abundance changes observed appear to be connected with the initiation of glaciation in the North Atlantic at 2.4 Ma. The long-term trend of decreasing Discoaster abundance probably reflects the fall of sea-surface temperatures. This trend of cooling is overprinted by short-term variations that are probably associated with orbital forcing. Evidence for the astronomical elements of eccentricity and obliquity periodicities were found at all sites; however, only at Sites 607, 659, and 662 were precessional periodicities detected. Furthermore, only at Site 659 was precession found to be dominant to obliquity. Abundance peaks of individual species were found to cross-correlate between sites. The distinct abundance fluctuations observed especially in the tropics suggest that temperature is not the only factor responsible for this variation. This study reveals for the first time the importance of productivity pressure on the suppression of Discoaster abundance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aqueous dihydrogen (H2,aq) is produced in copious amounts when seawater interacts with peridotite and H2O oxidizes ferrous iron in olivine to ferric iron in secondary magnetite and serpentine. Poorly understood in this process is the partitioning of iron and its oxidation state in serpentine, although both impose an important control on dihydrogen production. We present results of detailed petrographic, mineral chemical, magnetic and Mößbauer analyses of partially to fully serpentinized peridotites from the Ocean Drilling Program (ODP) Leg 209, Mid-Atlantic Ridge (MAR) 15°N area. These results are used to constrain the fate of iron during serpentinization and are compared with phase equilibria considerations and peridotite-seawater reaction path models. In samples from Hole 1274A, mesh-rims reveal a distinct in-to-out zoning from brucite at the interface with primary olivine, followed by a zone of serpentine + brucite ± magnetite and finally serpentine + magnetite in the outermost mesh-rim. The compositions of coexisting serpentine (Mg# 95) and brucite (Mg# 80) vary little throughout the core. About 30-50% of the iron in serpentine/brucite mesh-rims is trivalent, irrespective of subbasement depth and protolith (harzburgite versus dunite). Model calculations suggest that both partitioning and oxidation state of iron are very sensitive to temperature and water-to-rock ratio during serpentinization. At temperatures above 330 °C the dissolution of olivine and coeval formation of serpentine, magnetite and dihydrogen depends on the availability of an external silica source. At these temperatures the extent of olivine serpentinization is insufficient to produce much hydrogen, hence conditions are not reducing enough to form awaruite. At T < 330 °C, hydrogen generation is facilitated by the formation of brucite, as dissolution of olivine to form serpentine, magnetite and brucite requires no addition of silica. The model calculations suggest that the iron distribution observed in serpentine and brucite is consistent with formation temperatures ranging from <150 to 250 °C and bulk water-to-rock ratios between 0.1 and 5. These conditions coincide with peak hydrogen fugacities during serpentinization and are conducive to awaruite formation during main stage serpentinization. The development of the common brucite rims around olivine is either due to an arrested reaction olivine -> brucite -> serpentine + brucite, or reflects metastable olivine-brucite equilibria developing in the strong gradient in silica activity between orthopyroxene (talc-serpentine) and olivine (serpentine-brucite).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the faunal record of planktonic foraminifers in three long gravity sediment cores from the eastern equatorial Atlantic, the sea-surface temperature history ove the last 750,000 years was studied at a resolution of 3,000 to 10,000 years. Detailed oxygen-isotope and paleomagnetic stratigraphy helped to identify the following major faunal events: Globorotaloides hexagonus and Globorotalia tumida flexuosa became extinct in the eastern tropical Atlantic at the isotope stage 4/5 boundary, now dated at 68,000 years B.P. The persistent occurrence of the pink variety of Globigerinoides ruber started during the late stage 12 at 410,000 years B.P. CARTUNE-age. This datum may provide an easily detectible faunal stratigraphic marker for the mid-Brunhes Chron. The updated scheme of the Ericson zones helped the recognition of a hiatus at the northwestern slope of the Sierra Leone Basin covering oxygen-isotope stages 10 to 12. Classifying the planktonic foraminifer counts into six faunal assemblages, according to the factor analysis derived model of Pflaumann (1985), the tropical and the tropical-upwelling communities account for 57 % at Site 16415, and 86 % at Site 13519, respectively of the variance of the faunal record. A largely continuous paleotemperature record for both winter and summer seasons was obtained from the top of the Sierra Leone Rise with the winter temperatures ranging between 20 and 25 °C, and the summer ones between 24 and 30 °C. The record of cores from greater water depths is frequently interrupted by samples with no-analogue faunal communities and/or poor preservation. Based on the seasonality signal, during cold periods the termal equator shifted to a geographically mnore asymmetrical northern position. Dissolution altering the faunal communities becomes stronger with greater water depth, the estimated mean minimum loss of specimens increases from 70 % to 80 % between 2,860 and 3,850 water depth although some species will be more susceptible than others. Enhanced dissolution occured during stage 4 but also during cold phases in the warm stage 7 and 9. Correlations between the Foraminiferal Dissolution Index and the estimated sea-surface temperatures are significant. Foraminiferal flux rates, negatively correlated to the flux rates of organic carbon and of diatoms, may be a result of enhanced dissolution during cold stages, destroying still more of the faunal signal than indicated by the calculated minimum loss. The fluctuations of the oxygen-isotope curves and the hibernal sea-surfave temperatures are fairly coherent. During warm oxygen-isotope stages the temperature maxima lag often by 5 to 15 ka behind the respective sotope minima. During cold stages, sea-surface temperature changes are partly out of phase and contain additional fluctuations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The source rock potential of Cretaceous organic rich whole rock samples from deep sea drilling project (DSDP) wells offshore southwestern Africa was investigated using bulk and quantitative pyrolysis techniques. The sample material was taken from organic rich intervals of Aptian, Albian and Turonian aged core samples from DSDP site 364 offshore Angola, DSDP well 530A north of the Walvis Ridge offshore Namibia, and DSDP well 361 offshore South Africa. The analytical program included TOC, Rock-Eval, pyrolysis GC, bulk kinetics and micro-scale sealed vessel pyrolysis (MSSV) experiments. The results were used to determine differences in the source rock petroleum type organofacies, petroleum composition, gas/oil ratio (GOR) and pressure-volume-temperature (PVT) behavior of hydrocarbons generated from these black shales for petroleum system modeling purposes. The investigated Aptian and Albian organic rich shales proved to contain excellent quality marine kerogens. The highest source rock potential was identified in sapropelic shales in DSDP well 364, containing very homogeneous Type II and organic sulfur rich Type IIS kerogen. They generate P-N-A low wax oils and low GOR sulfur rich oils, whereas Type III kerogen rich silty sandstones of DSDP well 361 show a potential for gas/condensate generation. Bulk kinetic experiments on these samples indicate that the organic sulfur contents influence kerogen transformation rates, Type IIS kerogen being the least stable. South of the Walvis Ridge, the Turonian contains predominantly a Type III kerogen. North of the Walvis Ridge, the Turonian black shales contain Type II kerogen and have the potential to generate P-N-A low and high wax oils, the latter with a high GOR at high maturity. Our results provide the first compositional kinetic description of Cretaceous organic rich black shales, and demonstrate the excellent source rock potential, especially of the Aptian-aged source rock, that has been recognized in a number of the South Atlantic offshore basins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flow transverse bedforms (ripples and dunes) are ubiquitous in rivers and coastal seas. Local hydrodynamics and transport conditions depend on the size and geometry of these bedforms, as they constitute roughness elements at the bed. Bedform influence on flow energy must be considered for the understanding of flow dynamics, and in the development and application of numerical models. Common estimations or predictors of form roughness (friction factors) are based mostly on data of steep bedforms (with angle-of-repose lee slopes), and described by highly simplified bedform dimensions (heights and lengths). However, natural bedforms often are not steep, and differ in form and hydraulic effect relative to idealised bedforms. Based on systematic numerical model experiments, this study shows how the hydraulic effect of bedforms depends on the flow structure behind bedforms, which is determined by the bedform lee side angle, aspect ratio and relative height. Simulations reveal that flow separation behind bedform crests and, thus, a hydraulic effect is induced at lee side angles steeper than 11 to 18° depending on relative height, and that a fully developed flow separation zone exists only over bedforms with a lee side angle steeper than 24°. Furthermore, the hydraulic effect of bedforms with varying lee side angle is evaluated and a reduction function to common friction factors is proposed. A function is also developed for the Nikuradse roughness (k s), and a new equation is proposed which directly relates k s to bedform relative height, aspect ratio and lee side angle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies on the impact of historical, current and future global change require very high-resolution climate data (less or equal 1km) as a basis for modelled responses, meaning that data from digital climate models generally require substantial rescaling. Another shortcoming of available datasets on past climate is that the effects of sea level rise and fall are not considered. Without such information, the study of glacial refugia or early Holocene plant and animal migration are incomplete if not impossible. Sea level at the last glacial maximum (LGM) was approximately 125m lower, creating substantial additional terrestrial area for which no current baseline data exist. Here, we introduce the development of a novel, gridded climate dataset for LGM that is both very high resolution (1km) and extends to the LGM sea and land mask. We developed two methods to extend current terrestrial precipitation and temperature data to areas between the current and LGM coastlines. The absolute interpolation error is less than 1°C and 0.5 °C for 98.9% and 87.8% of all pixels for the first two 1 arc degree distance zones. We use the change factor method with these newly assembled baseline data to downscale five global circulation models of LGM climate to a resolution of 1km for Europe. As additional variables we calculate 19 'bioclimatic' variables, which are often used in climate change impact studies on biological diversity. The new LGM climate maps are well suited for analysing refugia and migration during Holocene warming following the LGM.