3 resultados para cold-formed steel wall frames
em Publishing Network for Geoscientific
Resumo:
In wide areas of Northern Siberia, glaciers have been absent since the Late Pleistocene. Therefore, ground ice and especially ice wedges are used as archives for paleoclimatic studies. In the present study, carried out on the Bykovsky Peninsula, eastern Lena Delta, we were able to distinguish ice wedges of different genetic units by means of oxygen and hydrogen isotopes. The results obtained by this study on the Ice Complex, a peculiar periglacial phenomenon, allowed the reconstruction of the climate history with a subdivision of a period of very cold winters (60-55 ka), followed by a long stable period of cold winter temperatures (50-24 ka), Between 20 ka and 11 ka, climate warming is indicated in stable isotope compositions, most probably after the Late Glacial Maximum. At that time, a change of the marine source of the precipitation from a more humid source to the present North AtIantic source region was assumed. For the Ice Complex, a continuous age-height relationship was established, indicating syngenetic vertical ice wedge growth and sediment accumulation rates of 0.7 m/ky. During the Holocene optimum, ice wedge growth was probably limited due to the extensive formation of lacustrine environments. Holocene ice wedges in thermokarst depressions (alases) and thermoerosional valleys (logs) were formed after climate deterioration from about 4.5 ka until the present. Winter temperatures were warmer at this time as compared to the cooler Pleistocene. Migration of bound water between ice wedges and segregated ice may have altered the isotopic composition of old ice wedges. The presence of ice wedges as diagnostic features for permafrost conditions since 60 ka, implies that a large glacier extending over the Laptev Sea shelf did not exist. For the remote non-glaciated areas of Northern Siberia, ice wedges were established as a powerful climate archive.
Resumo:
The origin of three Red Sea submarine brine pools was investigated by analysis of the S and O isotope ratios of dissolved sulfate and Sr isotope ratios of dissolved Sr in the brines. Sulfur and O isotope ratios of sulfate and Sr isotope ratios of evaporitic source rocks for the brines were measured for comparison. The S, O and Sr isotope ratios of evaporites recovered from DSDP site 227 are consistent with an upper Miocene evaporites age. The Valdivia Deep brine formed by karstic dissolution of Miocene evaporites by overlying seawater and shows no signs of hydrothermal input. The Suakin Deep brines are derived from, or have isotopically exchanged with Miocene or older evaporites. There has been only minor dilution of the brine by overlying seawater. Strontium isotope ratios of Suakin brine may indicate addition of a minor (15%) amount of volcanic Sr to the brine, but there is no evidence of high temperature brine-rock interaction. The sulfate in the Atlantis II brine was apparently derived from seawater. The O isotope ratio of sulfate in the present Atlantis II brine could reflect isotopic exchange between seawater sulfate and the brine at approximately 255°C. Approximately 30% of the Sr in the Atlantis II brine is derived from the underlying basalt, probably by hydrothermal leaching. Atlantis II brine is the only known example from the Red Sea which has a significant high-temperature hydrothermal history.