3 resultados para co-products

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alteration products of basalts from the four holes drilled during Leg 81 were studied and found to be characterized by the widespread occurrence of trioctahedral clay minerals (Mg smectite to chlorite). In some cases zeolites (analcite, chabazite) are associated with the saponite. A more oxidizing stage is marked by a saponite-celadonite association, presenting the geochemical characteristics of hydrothermal processes. Later stages of alteration are represented by palagonitization and subaerial weathering at two sites. These different alteration processes of basalts from Leg 81 record the paleoenvironment during the first opening stages of the Northeast Atlantic Ocean in the Paleocene-Eocene periods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Detailed petrochemical and geochemical studies of two samples of palagonitized basalts collected from depths 3060 and 4800 m have shown that palagonitization of tholeiitic basalt is accompanied by intensive removal of Ca and Mg and some removal of SiO2 from rocks. Appreciable amount of K is added to rocks in this process. Behavior of Fe, Al, Ti, Cr, and Na is inert. Palagonitization of alkalic basalt is accompanied by loss of SiO2, Ca, and Na from rocks. Contents of K and Mg are not changed. Four stages can be discerned in alteration of basalts under deep-sea conditions: syngenetic and diffusional palagonitization, hydrothermal leaching, and underwater weathering. Crusts of Fe-Mn ores are formed through removal of Fe, Mn, Ni, Co, Sn, and Mo from rocks and sorption of Pb, Hg, Yb, La, Bi, W, and Be from sea water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major and trace element compositions of basalts from the lower part of Hole 504B indicate their cogenetic nature. The cored sequence of interlayered pillow lavas and massive lava flows was produced by eruption of lavas, slightly variable in composition. Plagioclase and olivine crystallization in a shallow magma chamber, followed by small-scale fractionation at higher levels, is responsible for these variations. Except in highly fractured zones within the basement, there are systematic variations in the style and degree of rock alteration with depth. Trace element characteristics of altered rocks and secondary minerals indicate that progressive changes in sea water composition occurred as it reacted with basaltic crust.