16 resultados para cis-cyclohexane-1,2-dicarboxylic acid

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Potassium permanganate oxidative degradations were conducted for kerogens isolated from Cretaceous black shales (DSDP Leg 41, Site 368), thermally altered during the Miocene by diabase intrusions and from unaltered samples heated under laboratory conditions (250-500°C). Degradation products of less altered kerogens are dominated by normal C4-C15 alpha,omega-dicarboxylic acids, with lesser amounts of n-C16 and n-C18 monocarboxylic acids, and benzene mono-to-tetracarboxylic acids. On the other hand, thermally altered kerogens show benzene di-to-tetracarboxylic acids as dominant degradation products, with lesser or no amounts (variable depending on the degree of thermal alteration) of alpha,omega-dicarboxylic acids. Essentially no differences between the oxidative degradation products of naturally- and artificially-altered kerogens are observed. As a result of this study, five indices of aromatization (total aromatic acids/kerogen; apparent aromaticity; benzenetetracarboxylic acids/total aromatic acids; benzene-1,2-dicarboxylic acid/benzenedicarboxylic acids; benzene-1,2,3-tricarboxylic acid/benzenetricarboxylic acids) and two indices of aliphatic character (Total aliphatic acids/kerogen; Aliphaticity) are proposed to characterize the degree of thermal alteration of kerogens. Furthermore, a good correlation is observed between apparent aromaticity estimated by the present KMnO4 oxidation method and that from the 13C NMR method (Dennis et al., 1982; doi:10.1016/0016-7037(82)90046-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The absolute configuration of the title acid (2) has been determined to be S by X-ray crystallography. Thus, decarboxylation of 2 produces (S)-(+)-halothane with 99% retention of configuration. This behavior is compared to other stereoselective decarboxylation reactions of ?-haloacids from the literature that also give high degrees of retention of configuration when in the form of their quaternary ammonium salts, which contain one proton. The proton of the ammonium salt is necessary to protonate the anionic intermediate formed from decarboxylation. In the absence of this relatively acidic proton, we had previously found that using triethylene glycol (TEG) as both solvent and proton source for the decarboxylation reaction of acid 2 caused poor stereoselectivity. This was in contrast to 1,2,2,2-tetrafluoro-1-methoxypropionic acid (6), which showed a high degree of retention of configuration in TEG. To rationalize this differing behavior we report DFT studies at PCM-B3LYP/6-31++G** level of theory (the results were additionally confirmed with 6-311++G** and aug-cc-pVDZ basis sets). The energy barrier to inversion of configuration of the anionic reaction intermediate of acid 2 (11) is 10.23 kcal/mol. However, we find that the anionic intermediate from acid 6 (10) would rather undergo ?-elimination instead of inversion of configuration. Thus the planar transition state required for inversion of configuration is never reached, regardless of the rate of proton transfer to the anion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fatty acid (FA) composition of representatives belonging to 18 polychaete families from the Southern Ocean shelf and deep sea (600 to 5337 m) was analysed in order to identify trophic biomarkers and elucidate possible feeding preferences. Total FA content was relatively low with few exceptions and ranged from 1.0 to 11.6% of total body dry weight. The most prominent FA found were 20:5(n-3), 16:0, 22:6(n-3), 18:1(n-7), 20:4(n-6), 18:0, 20:1(n-11) and 18:1(n-9). For some polychaete families and species FA profiles indicated selective feeding on certain dietary components, like freshly deposited diatom remains (e.g., Spionidae, Fauveliopsidae and Flabelligeridae) or foraminiferans (e.g., Euphrosinidae, Nephtyidae and Syllidae). Feeding patterns were relatively consistent within families at the deep stations, while the FA composition differed between the deep and the shelf stations within the same family. Fatty alcohols, indicative of wax ester storage, were found in almost all families (in proportions of 0.0 to 29.3% of total FA and fatty alcohols). The development of this long-term storage mechanism of energy reserves possibly displays an evolutionary strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sub-Arctic marine ecosystems are some of the most productive ecosystems in the world's oceans. The capacity of herbivorous zooplankton, such as Calanus, to biosynthesize and store large amounts of lipids during the short and intense spring bloom is a fundamental adaptation which facilitates the large production in these ecosystems. These energy-rich lipids are rapidly transferred through the food chain to Arctic seals. The fatty acids and stable isotopes from harp seal (Phoca groenlandica) and hooded seal (Cystophora cristata) off East Greenland as well as their potential prey, were analysed. The results were used to describe the lipid dynamics and energy transfer in parts of the East Greenland ecosystem. Even if the two seal species showed considerable overlap in diet and occurred at relatively similar trophic levels, the fatty acid profiles indicated that the bases of the food chains of harp and hooded seals were different. The fatty acids of harp seals originate from diatom-based food chain, whereas the fatty acids of hooded seals originate from dinoflagellate and the prymnesiophyte Phaeocystis pouchetii-based food chain. Stable isotope analyses showed that both species are true carnivores on the top of their food chains, with hooded seal being slightly higher on the food chain than harp seal.

Relevância:

100.00% 100.00%

Publicador: