4 resultados para chemistry course
em Publishing Network for Geoscientific
Resumo:
Ocean acidification (OA) threatens the existence of coral reefs by slowing the rate of calcium carbonate (CaCO3) production of framework-building corals thus reducing the amount of CaCO3 the reef can produce to counteract natural dissolution. Some evidence exists to suggest that elevated levels of dissolved inorganic nutrients can reduce the impact of OA on coral calcification. Here, we investigated the potential for enhanced energetic status of juvenile corals, achieved via heterotrophic feeding, to modulate the negative impact of OA on calcification. Larvae of the common Atlantic golf ball coral, Favia fragum, were collected and reared for 3 weeks under ambient (421 µatm) or significantly elevated (1,311 µatm) CO2 conditions. The metamorphosed, zooxanthellate spat were either fed brine shrimp (i.e., received nutrition from photosynthesis plus heterotrophy) or not fed (i.e., primarily autotrophic). Regardless of CO2 condition, the skeletons of fed corals exhibited accelerated development of septal cycles and were larger than those of unfed corals. At each CO2 level, fed corals accreted more CaCO3 than unfed corals, and fed corals reared under 1,311 µatm CO2 accreted as much CaCO3 as unfed corals reared under ambient CO2. However, feeding did not alter the sensitivity of calcification to increased CO2; Delta calcification/Delta Omega was comparable for fed and unfed corals. Our results suggest that calcification rates of nutritionally replete juvenile corals will decline as OA intensifies over the course of this century. Critically, however, such corals could maintain higher rates of skeletal growth and CaCO3 production under OA than those in nutritionally limited environments.
Resumo:
Rising concentrations of atmospheric CO2 are changing the carbonate chemistry of the oceans, a process known as ocean acidification (OA). Absorption of this CO2 by the surface oceans is increasing the amount of total dissolved inorganic carbon (DIC) and bicarbonate ion (HCO3) available for marine calcification yet is simultaneously lowering the seawater pH and carbonate ion concentration ([CO3]), and thus the saturation state of seawater with respect to aragonite. We investigated the relative importance of [HCO3] versus [CO3] for early calcification by new recruits (primary polyps settled from zooxanthellate larvae) of two tropical coral species, Favia fragum and Porites astreoides. The polyps were reared over a range of ?ar values, which were manipulated by both acid-addition at constant pCO2 (decreased total [HCO3] and [CO3]) and by pCO2 elevation at constant alkalinity (increased [HCO3], decreased [CO3]). Calcification after 2 weeks was quantified by weighing the complete skeleton (corallite) accreted by each polyp over the course of the experiment. Both species exhibited the same negative response to decreasing [CO3] whether ?ar was lowered by acid-addition or by pCO2 elevation-calcification did not follow total DIC or [HCO3]. Nevertheless, the calcification response to decreasing [CO3] was nonlinear. A statistically significant decrease in calcification was only detected between Omega aragonite = <2.5 and Omega aragonite = 1.1-1.5, where calcification of new recruits was reduced by 22-37% per 1.0 decrease in Omega aragonite. Our results differ from many previous studies that report a linear coral calcification response to OA, and from those showing that calcification increases with increasing [HCO3]. Clearly, the coral calcification response to OA is variable and complex. A deeper understanding of the biomineralization mechanisms and environmental conditions underlying these variable responses is needed to support informed predictions about future OA impacts on corals and coral reefs.
Resumo:
The specific transporters involved in maintenance of blood pH homeostasis in cephalopod molluscs have not been identified to date. Using in situ hybridization and immuno histochemical methods, we demonstrate that Na+/K+-ATPase (soNKA), a V-type H+-ATPase (soV-HA), and Na+/HCO3- cotransporter (soNBC) are co-localized in NKA-rich cells in the gills of Sepia officinalis. mRNA expression patterns of these transporters and selected metabolic genes were examined in response to moderately elevated seawater pCO2 (0.16 and 0.35 kPa) over a time-course of six weeks in different ontogenetic stages. The applied CO2 concentrations are relevant for ocean acidification scenarios projected for the coming decades. We determined strong expression changes in late stage embryos and hatchlings, with one to three log2-fold reductions in soNKA, soNBCe, socCAII and COX. In contrast, no hypercapnia induced changes in mRNA expression were observed in juveniles during both short- and long-term exposure. However a transiently increased demand of ion regulatory demand was evident during the initial acclimation reaction to elevated seawater pCO2. Gill Na+/K+-ATPase activity and protein concentration were increased by approximately 15% in during short (2-11 day), but not long term (42 day) exposure. Our findings support the hypothesis that the energy budget of adult cephalopods is not significantly compromised during long-term exposure to moderate environmental hypercapnia. However, the down regulation of ion-regulatory and metabolic genes in late stage embryos, taken together with a significant reduction in somatic growth, indicates that cephalopod early life stages are challenged by elevated seawater pCO2.
Resumo:
In this laboratory study, we monitored the buildup of biomass and concomitant shift in seawater carbonate chemistry over the course of a Trichodesmium bloom under different phosphorus (P) availability. During exponential growth, dissolved inorganic carbon (DIC) decreased, while pH increased until maximum cell densities were reached. Once P became depleted, DIC decreased even further and total alkalinity (TA) dropped, accompanied by precipitation of aragonite. Under P-replete conditions, DIC increased and TA remained constant in the postbloom phase. A diffusion-reaction model was employed to estimate changes in carbonate chemistry of the diffusive boundary layer. This study demonstrates that Trichodesmium can induce precipitation of aragonite from seawater and further provides possible explanations about underlying mechanisms.