9 resultados para chemical recovery

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

ODP Hole 740A is located on the inner part of the East Antarctic continental shelf in Prydz Bay, at the seaward end of a major onshore rift structure known as the Lambert Graben. Drilling at this site led to the recovery of some 65 m of continental sediments (Prydz Bay red beds) that form part of a much thicker (2-3 km) pre-continental breakup sequence, the development of which may be related to the initiation and rifting of the Lambert Graben. Palynological and paleomagnetic studies have not been able to determine the age of the sediments; they may be equivalent to the onshore late Permian Amery Group or younger. The succession consists predominantly of sandstone, siltstone, and claystone arranged in erosively based, pedogenically influenced fining-upward sequences up to 5 m thick. These were deposited by shallow, braided streams draining an extensively vegetated alluvial plain, with sufficient topographic relief to trap fine-grained sediment and inhibit rapid channel shifting. Pedogenic processes were initiated on the alluvial plain, but climatic conditions were generally unsuitable for extensive pedogenic carbonate formation and the development of mature soil profiles. The sediments were probably derived from a rapidly uplifted fault block terrain composed of upper Proterozoic and Archaean gneisses lying to the southeast of the depositional site. Uplift may have taken place along the tectonically active seaward extension of the eastern faulted margin of the Lambert Graben, which passes immediately southeast of Hole 740A. Differences in mineralogical composition between the Amery Group and the Prydz Bay red beds probably reflect differences in rock composition in the source area. The age of the Prydz Bay red beds has still to be resolved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the data of synchronous observations of hydrophysical and biogeochemical parameters in the near-mouth and shallow-water areas of the northern Caspian in 2000-2001, the scale of spatiotemporal variability in the following characteristics of the water-bottom system was estimated (1) flow velocity and direction within vortex structures formed by the combined effect of wind, discharge current, and the presence of higher aquatic plants; (2) dependence of the spatial distribution of the content and composition of suspended particulate matter on the hydrodynamic regime of waters and development of phytoplankton; (3) variations in the grain-size, petrographic, mineralogical, and chemical compositions of the upper layer of bottom sediments at several sites in the northern Caspian related to the particular local combination of dominant natural processes; and (4) limits of variability in the group composition of humus compounds in bottom sediments. The acquired data are helpful in estimating the geochemical consequences of a sea level rise and during the planning of preventive environmental protection measures in view of future oil and gas recovery in this region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the presence of extensive gas hydrate on the Cascadia margin, offshore from the western U.S. and Canada, has been inferred from marine seismic records and pore water chemistry, solid gas hydrate has only been found at one location. At Ocean Drilling Program (ODP) Site 892, offshore from central Oregon, gas hydrate was recovered close to the sediment-water interface at 2-19 m below the seafloor (mbsf) at 670 m water depth. The gas hydrate occurs as elongated platy crystals or crystal aggregates, mostly disseminated irregularly, with higher concentrations occurring in discrete zones, thin layers, and/or veinlets parallel or oblique to the bedding. A 2- to 3-cm thick massive gas hydrate layer, parallel to bedding, was recovered at ~17 mbsf. Gas from a sample of this layer was composed of both CH4 and H2S. This sample is the first mixed-gas hydrate of CH4-H2S documented in ODP; it also contains ethane and minor amounts of CO2. Measured temperatures of the recovered core ranged from 2 to -1.8°C and are 6 to 8 degrees lower than in-situ temperatures. These temperature anomalies were caused by the partial dissociation of the CH4-H2S hydrate during recovery without a pressure core sampler. During this dissociation, toxic levels of H2S (delta34S, +27.4?) were released. The delta13C values of the CH4 in the gas hydrate, -64.5 to -67.5? (PDB), together with deltaD values of -197 to -199? (SMOW) indicate a primarily microbial source for the CH4. The delta18O value of the hydrate H2O is +2.9? (SMOW), comparable with the experimental fractionation factor for sea-ice. The unusual composition (CH4-H2S) and depth distribution (2-19 mbsf) of this gas hydrate indicate mixing between a methane-rich fluid with a pore fluid enriched in sulfide; at this site the former is advecting along an inclined fault into the active sulfate reduction zone. The facts that the CH4-H2S hydrate is primarily confined to the present day active sulfate reduction zone (2-19 mbsf), and that from here down to the BSR depth (19-68 mbsf) the gas hydrate inferred to exist is a >=99% CH4 hydrate, suggest that the mixing of CH4 and H2S is a geologically young process. Because the existence of a mixed CH4-H2S hydrate is indicative of moderate to intense advection of a methane-rich fluid into a near surface active sulfate reduction zone, tectonically active (faulted) margins with organic-rich sediments and moderate to high sedimentation rates are the most likely regions of occurrence. The extension of such a mixed hydrate below the sulfate reduction zone should reflect the time-span of methane advection into the sulfate reduction zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Middle Valley segment at the northern end of the Juan de Fuca Ridge is a deep extensional rift blanketed with 200-500 m of Pleistocene turbiditic sediment. Sites 857 and 858 were drilled during Ocean Drilling Program Leg 139 to determine whether these two sites were hydrologically linked end members of an active hydrothermal circulation system. Site 858 was placed in an area of active hydrothermal discharge with fluids up to 270°C venting through anhydrite-bearing mounds on top of altered sediment. The shallow basement of fine-grained basalt that underlies the vents at Site 858 is interpreted as a seamount that was subsequently buried by turbidites. Site 857 was placed 1.6 km south of the Site 858 vents in a zone of high heat flow and numerous seismically imaged ridge-parallel faults. Drilling at Site 857 encountered sediments that are increasingly altered with depth and that overlie a series of mafic sills at depths of 460-940 m below sea floor. Sill margins and adjacent baked sediment are highly altered to magnesian chlorite and crosscut with veins filled with quartz, chlorite, sulfides, epidote, and wairakite. The sill interiors vary from slightly altered, with unaltered plagioclase and clinopyroxene in a mesostasis replaced by chlorite, to local zones of intense alteration and brecciation. In these latter zones, the sill interiors are pervasively replaced by chlorite, epidote, quartz, pyrite, titanite, and rare actinolite. The most complete replacement is associated with brecciated horizons with low recovery and slickensides on fracture surfaces, which we interpret as intersections between faults and the sills. Geochemically, the alteration of the sill complex is reflected in significant whole-rock depletions in Ca, Sr, and Na with corresponding enrichments in Mg, Al, and most metals. The latter results from the formation of conspicuous sulfide poikiloblasts. In contrast, metamorphism of the Site 858 seamount includes incomplete albitization of plagioclase phenocrysts and replacement of sparse mafic phenocrysts. Much of the basement alteration at Site 858 is confined to crosscutting veins except for a highly altered and veined horizon at the contact between basaltic basement and the overlying sediment. The sill complex at Site 857 is more highly depleted in 18O (d18O = 2.4 per mil - 4.7 per mil) and more pervasively replaced by secondary minerals relative to the extrusives at Site 858 (d18O = 4.5 per mil - 5.5 per mil). There is no evidence of significant albitization of the plagioclase at Site 857, suggesting high Ca/Na in the pore fluids. Fluid-inclusion data from hydrothermal minerals in altered mafic rocks and veins at Sites 857 and 858 show a consistency of homogenization temperatures, varying from 245 to 270°C, which is within the range of temperatures observed for the fluids venting at Site 858. The consistency of the fluid inclusion temperatures, the lack of albitization within the Site 857 sills, and the apparently low water/rock ratio collectively suggest that the sill complex at Site 857 is in thermal equilibrium and being altered by a highly evolved Ca-rich fluid similar to the fluids now venting at Site 858. The alteration evident in these two deep crustal drillsites is a result of the ongoing hydrothermal circulation and is consistent with downhole logging results, instrumented borehole results, and hydrothermal fluid chemistry. The pervasive alteration of the laterally extensive sill-sediment complex at Site 857 determines the chemistry of the fluids that are venting at Site 858. The limited alteration of the Site 858 lavas suggests that this basement edifice acts as a penetrator or ventilator for the regional hydrothermal reservoir with much of the flow focussed at the highly altered and veined sediment-basalt contact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manganese nodules recovered in the Pacific Ocean by the U. S. Bureau of Mines and by DeepSea Ventures Ltd. are studied for their chemical composition using X microprobe and X-ray fluorescence methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the state of the art in processing and extraction of ocean floor manganese nodules. It briefly reviews the mining sites where the abundant rich nodules occur and also discusses the metal distribution in nodules in view of economical processing and extraction of these metal values. The paper discloses in a detailed manner the physical and chemical characteristics of nodules, including porosity, surface area, water content and the effect of temperature on crystal structure of major constituents of nodules. In the extraction aspect of nodules, the paper reviews two different extraction schemes revealed in the literature, namely hydrometallurgical treatment and pyrometallurgical treatment. The hydrometallurgical treatments include acid leaching, ammonia leaching, leaching with reducing agents and leaching after high temperature pre-treatments such as in sulfating rousting, while the pyrometallurgical processes include smelting, chlorination-vaporization and segregation. The paper also covers metal recovery processes from leach liquor. An economic survey of processing nodules has been made in terms of problems associated with metal-marketing, and impact of metal production from nodules on mineral industries.