2 resultados para chain control

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A reconnaissance study of alkenone stratigraphy for the past 35 m.y. in the northern South China Sea (SCS) using sediments from Sites 1147 and 1148 of Ocean Drilling Program (ODP) Leg 184 has been completed. Alkenones were not detected in sediment samples older than ~31 Ma. However, C37:2 appeared in the sedimentary record between ~8 and 31 Ma and both C37:2 and C37:3 were present between 0 and 8 Ma. These changes in alkenone occurrences may signal a response to global-scale Neogene cooling as well as to monsoon intensification and sea level changes over time as a result of Himalayan uplift and the opening of the SCS. Alternatively, they may be related to an evolutionary record of the development of temperature control on alkenone production in coccolithophores. The Uk'37 index for 0-8 Ma produces sea-surface temperatures (SST) of 19°-26°C, which are in the range of previously determined glacial-interglacial values for the northern SCS. Before the late Pleistocene (~1.2 Ma), the SST range is between 23° and 26°C with less variation. This change in variability may signify the early stage of intensified winter monsoons where cold wind and waters from the north may not yet have had a significant effect on SST or it may be the evolutionary link between the early development of unsaturated alkenones in coccolithophores and modern temperature control of alkenone production. We believe a long-term alkenone record is useful for further understanding of global-scale neogene cooling, the development of the East Asian monsoon system, and the evolutionary development of temperature control on alkenone unsaturation. Our data indicate that a high-resolution Uk'37 record for at least the last ~8 Ma is feasible for the northern SCS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Marine- and terrestrial-derived biomarkers (alkenones, brassicasterol, dinosterol, and long-chain n-alkanes), as well as carbonate, biogenic opal, and ice-rafted debris (IRD), were measured in two sediment cores in the Sea of Okhotsk, which is located in the northwestern Pacific rim and characterized by high primary productivity. Down-core profiles of phytoplankton markers suggest that primary productivity abruptly increased during the global Meltwater Pulse events 1A (about 14 ka) and 1B (about 11 ka) and stayed high in the Holocene. Spatial and temporal distributions of the phytoplankton productivity were found to be consistent with changes in the reconstructed sea ice distribution on the basis of the IRD. This demonstrates that the progress and retreat of sea ice regulated primary productivity in the Sea of Okhotsk with minimum productivity during the glacial period. The mass accumulation rates of alkenones, CaCO3, and biogenic opal indicate that the dominant phytoplankton species during deglaciation was the coccolithophorid, Emiliania huxleyi, which was replaced by diatoms in the late Holocene. Such a phytoplankton succession was probably caused by an increase in silicate supply to the euphotic layer, possibly associated with a change in surface hydrography and/or linked to enhanced upwelling of North Pacific Deep Water.