2 resultados para causative
em Publishing Network for Geoscientific
Resumo:
The copepod Calanus finmarchicus is the dominant species of the meso-zooplankton in the Norwegian Sea, and constitutes an important link between the phytoplankton and the higher trophic levels in the Norwegian Sea food chain. An individualbased model for C. finmarchicus, based on super-individuals and evolving traits for behaviour, stages, etc., is two-way coupled to the NORWegian ECOlogical Model system (NORWECOM). One year of modelled C. finmarchicus spatial distribution, production and biomass are found to represent observations reasonably well. High C. finmarchicus abundance is found along the Norwegian shelf-break in the early summer, while the overwintering population is found along the slope and in the deeper Norwegian Sea basins. The timing of the spring bloom is generally later than in the observations. Annual Norwegian Sea production is found to be 29 million tonnes of carbon and a production to biomass (P/B) ratio of 4.3 emerges. Sensitivity tests show that the modelling system is robust to initial values of behavioural traits and with regards to the number of super-individuals simulated given that this is above about 50,000 individuals. Experiments with the model system indicate that it provides a valuable tool for studies of ecosystem responses to causative forces such as prey density or overwintering population size. For example, introducing C. finmarchicus food limitations reduces the stock dramatically, but on the other hand, a reduced stock may rebuild in one year under normal conditions. The NetCDF file contains model grid coordinates and bottom topography.
Resumo:
Mass mortalities of Pacific oysters Crassostrea gigas occur regularly when temperatures are high. Elevated temperatures facilitate the proliferation and spread of pathogens and simultaneously impose physiological stress on the host. Additionally, periods of high temperatures coincide with the oyster spawning season. Spawning is energetically costly and can further compromise oyster immunity. Most studies monitoring the underlying factors of oyster summer mortality in the field, point to the involvement of abiotic and biotic factors including low salinities, high temperatures, pollutants, toxic algae blooms, pathogen exposure and physical stress in conjunction with maturation. However, studies addressing more than two factors experi- mentally are missing thus far. Therefore, we investigated the combination of three main factors including abiotic as well as internal and external biotic stressors by conducting controlled infection experiments on pre-and post-spawning as well as on gravid oysters with opportunistic Vibrio sp. at two different tempera- tures. Based on mortality rates, infection intensity and cellular immune parameters, we provide experimental evidence that all three factors (i.e. reproductive investment, elevated temperatures and infection with oppor- tunistic Vibrio sp.) act additively to the phenomenon of oyster summer mortality, leaving post-spawning oyster more susceptible to SMS than pre-spawning and gravid oysters. While previous studies found that post-spawning oysters have a lower thermal tolerance and a reduced ability to withstand pathogen infec- tions, our study now allows to separate the relative contribution of different causative agents to oyster sum- mer mortality and pinpoint to infection with pathogenic Vibrio sp. being of highest importance. In addition we can add a mechanistic understanding for the higher losses after spawning during which the phagocytic ability of hemocytes was strongly impeded resulting in insufficient clearance of pathogens.