11 resultados para catch rate

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interannual environmental variability in Peru is dominated by the El Niño Southern Oscillation (ENSO). The most dramatic changes are associated with the warm El Niño (EN) phase (opposite the cold La Niña phase), which disrupts the normal coastal upwelling and affects the dynamics of many coastal marine and terrestrial resources. This study presents a trophic model for Sechura Bay, located at the northern extension of the Peruvian upwelling system, where ENSO-induced environmental variability is most extreme. Using an initial steady-state model for the year 1996, we explore the dynamics of the ecosystem through the year 2003 (including the strong EN of 1997/98 and the weaker EN of 2002/03). Based on support from literature, we force biomass of several non-trophically-mediated 'drivers' (e.g. Scallops, Benthic detritivores, Octopus, and Littoral fish) to observe whether the fit between historical and simulated changes (by the trophic model) is improved. The results indicate that the Sechura Bay Ecosystem is a relatively inefficient system from a community energetics point of view, likely due to the periodic perturbations of ENSO. A combination of high system productivity and low trophic level target species of invertebrates (i.e. scallops) and fish (i.e. anchoveta) results in high catches and an efficient fishery. The importance of environmental drivers is suggested, given the relatively small improvements in the fit of the simulation with the addition of trophic drivers on remaining functional groups' dynamics. An additional multivariate regression model is presented for the scallop Argopecten purpuratus, which demonstrates a significant correlation between both spawning stock size and riverine discharge-mediated mortality on catch levels. These results are discussed in the context of the appropriateness of trophodynamic modeling in relatively open systems, and how management strategies may be focused given the highly environmentally influenced marine resources of the region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To address growing concern over the effects of fisheries non-target catch on elasmobranchs worldwide, the accurate reporting of elasmobranch catch is essential. This requires data on a combination of measures, including reported landings, retained and discarded non-target catch, and post-discard survival. Identification of the factors influencing discard vs. retention is needed to improve catch estimates and to determine wasteful fishing practices. To do this we compared retention rates of elasmobranch non-target catch in a broad subset of fisheries throughout the world by taxon, fishing country, and gear. A regression tree and random forest analysis indicated that taxon was the most important determinant of retention in this dataset, but all three factors together explained 59% of the variance. Estimates of total elasmobranch removals were calculated by dividing the FAO global elasmobranch landings by average retention rates and suggest that total elasmobranch removals may exceed FAO reported landings by as much as 400%. This analysis is the first effort to directly characterize global drivers of discards for elasmobranch non-target catch. Our results highlight the importance of accurate quantification of retention and discard rates to improve assessments of the potential impacts of fisheries on these species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sampling was conducted during RV Meteor cruise M93 in austral summer 2013 in an area from 11ºS to 14ºS and approximately 120 km offshore to within 10 km of the Peruvian coast. Specimens were collected using a Hydrobios Multinet Maxi (0.5 m2 mouth opening, 330 µm mesh size, 9 nets) and a WP-2 net (Hydrobios, 0.26 m2 mouth opening, 200 µm mesh size). P. monodon were identified according to http://researchdata.museum.vic.gov.au/squatlobster/delta/deltakey.html. Specimens were transferred into filtered, well-oxygenated seawater immediately after the catch and maintained for 4 to 16 hours prior to physiological experiments. Maintenance and physiological experiments were conducted at 13°C as the temperature observed at 100 to 200 m depth in the OMZ ranged from 13.7 to 12.7°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Respiration and ammonium excretion rates at different oxygen partial pressure were measured for calanoid copepods and euphausiids from the Eastern Tropical South Pacific and the Eastern Tropical North Atlantic. All specimens used for experiments were caught in the upper 400 m of the water column and only animals appearing unharmed and fit were used for experiments. Specimens were sorted, identified and transferred into aquaria with filtered, well-oxygenated seawater immediately after the catch and maintained for 1 to 13 hours prior to physiological experiments at the respective experimental temperature. Maintenance and physiological experiments were conducted in darkness in temperature-controlled incubators at 11, 13 or 23 degree C (±1). Before and during experiments, animals were not fed. Respiration and ammonium excretion rate measurements (both in µmol h-1 gDW-1) at varying oxygen concentrations were conducted in 12 to 60 mL gas-tight glass bottles. These were equipped with oxygen microsensors (ø 3 mm, PreSens Precision Sensing GmbH, Regensburg, Germany) attached to the inner wall of the bottles to monitor oxygen concentrations non-invasively. Read-out of oxygen concentrations was conducted using multi-channel fiber optic oxygen transmitters (Oxy-4 and Oxy-10 mini, PreSens Precision Sensing GmbH, Regensburg, Germany) that were connected via optical fibers to the outside of the bottles directly above the oxygen microsensor spots. Measurements were started at pre-adjusted oxygen and carbon dioxide levels. For this, seawater stocks with adjusted pO2 and pCO2 were prepared by equilibrating 3 to 4 L of filtered (0.2 µm filter Whatman GFF filter) and UV - sterilized (Aqua Cristal UV C 5 Watt, JBL GmbH & Co. KG, Neuhofen, Germany) water with premixed gases (certified gas mixtures from Air Liquide) for 4 hours at the respective experimental temperature. pCO2 levels were chosen to mimic the environmental pCO2 in the ETSP OMZ or the ETNA OMZ. Experimental runs were conducted with 11 to 15 trial incubations (1 or 2 animals per incubation bottle and three different treatment levels) and three animal-free control incubations (one per experimental treatment). During each run, experimental treatments comprised 100% air saturation as well as one reduced air saturation level with and without CO2. Oxygen concentrations in the incubation bottles were recorded every 5 min using the fiber-optic microsensor system and data recording for respiration rate determination was started immediately after all animals were transferred. Respiration rates were calculated from the slope of oxygen decrease over selected time intervals. Chosen time intervals were 20 to 105 min long. No respiration rate was calculated for the first 20 to 60 min after animal transfer to avoid the impact of enhanced activity of the animal or changes in the bottle water temperature during initial handling on the respiration rates and oxygen readings. Respiration rates were obtained over a maximum of 16 hours incubation time and slopes were linear at normoxia to mild hypoxia. Respiration rates in animal-free control bottles were used to correct for microbial activity. These rates were < 2% of animal respiration rates at normoxia. Samples for the measurement of ammonium concentrations were taken after 2 to 10 hours incubation time. Ammonium concentration was determined fluorimetrically (Holmes et al., 1999). Ammonium excretion was calculated as the concentration difference between incubation and animal-free control bottles. Some specimens died during the respiration and excretion rate measurements, as indicated by a cessation of respiration. No excretion rate measurements were conducted in this case, but the oxygen level at which the animal died was noted.