63 resultados para caries locations

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many important chemical reactions occur in polar snow, where solutes may be present in several reservoirs, including at the air-ice interface and in liquid-like regions within the ice matrix. Some recent laboratory studies suggest chemical reaction rates may differ in these two reservoirs. While investigations have examined where solutes are found in natural snow and ice, similar research has not identified solute locations in laboratory samples, nor the possible factors controlling solute segregation. To address this, we examined solute locations in ice samples prepared from either aqueous cesium chloride (CsCl) or Rose Bengal solutions that were frozen using several different methods. Samples frozen in a laboratory freezer had the largest liquid-like inclusions and air bubbles, while samples frozen in a custom freeze chamber had somewhat smaller air bubbles and inclusions; in contrast, samples frozen in liquid nitrogen showed much smaller concentrated inclusions and air bubbles, only slightly larger than the resolution limit of our images (~2 µm). Freezing solutions in plastic versus glass vials had significant impacts on the sample structure, perhaps because the poor heat conductivity of plastic vials changes how heat is removed from the sample as it cools. Similarly, the choice of solute had a significant impact on sample structure, with Rose Bengal solutions yielding smaller inclusions and air bubbles compared to CsCl solutions frozen using the same method. Additional experiments using higher-resolution imaging of an ice sample show that CsCl moves in a thermal gradient, supporting the idea that the solutes in ice are present in liquid-like regions. Our work shows that the structure of laboratory ice samples, including the location of solutes, is sensitive to freezing method, sample container, and solute characteristics, requiring careful experimental design and interpretation of results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to its strong gradient in salinity and small temperature gradient the Mediterranean provides an ideal setting to study the impact of salinity on the incorporation of Mg into foraminiferal tests. We have investigated tests of Globorotalia inflata and Globigerina bulloides in plankton tow and core top samples from the Western Mediterranean using ICP-OES for bulk analyses and LA-ICP-MS for analyses of individual chambers in single specimens. Mg/Ca observed in G. inflata are consistent with existing calibrations, whereas G. bulloides had significantly higher Mg/Ca than predicted, particularly in core top samples from the easterly stations. Scanning Electron Microscopy and Laser Ablation ICP-MS revealed secondary overgrowths on some tests, which could explain the observed high core top Mg/Ca. We suggest that the Mediterranean intermediate and deep water supersaturated with respect to calcite cause these overgrowths and therefore increased bulk Mg/Ca. However, the different species are influenced by diagenesis to different degrees probably due to different test morphologies. Our results provide new perspectives on reported anomalously high Mg/Ca in sedimentary foraminifera and the applicability of the Mg/Ca paleothermometry in high salinity settings, by showing that (1) part of the signal is generated by precipitation of inorganic calcite on the foraminifer test due to increased calcite saturation state of the water and (2) species with high surface-to-volume shell surfaces are potentially more affected by secondary Mg-rich calcite encrustation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of global climate change on coral reefs is expected to be most profound at the sea surface, where fertilization and embryonic development of broadcast-spawning corals takes place. We examined the effect of increased temperature and elevated CO2 levels on the in vitro fertilization success and initial embryonic development of broadcast-spawning corals using a single male:female cross of three different species from mid- and high-latitude locations: Lyudao, Taiwan (22° N) and Kochi, Japan (32° N). Eggs were fertilized under ambient conditions (27 °C and 500 µatm CO2) and under conditions predicted for 2100 (IPCC worst case scenario, 31 °C and 1000 µatm CO2). Fertilization success, abnormal development and early developmental success were determined for each sample. Increased temperature had a more profound influence than elevated CO2. In most cases, near-future warming caused a significant drop in early developmental success as a result of decreased fertilization success and/or increased abnormal development. The embryonic development of the male:female cross of A. hyacinthus from the high-latitude location was more sensitive to the increased temperature (+4 °C) than the male:female cross of A. hyacinthus from the mid-latitude location. The response to the elevated CO2 level was small and highly variable, ranging from positive to negative responses. These results suggest that global warming is a more significant and universal stressor than ocean acidification on the early embryonic development of corals from mid- and high-latitude locations.