190 resultados para carbon source

em Publishing Network for Geoscientific


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A multitracer approach is applied to assess the impact of boundary fluxes (e.g., benthic input from sedi- ments or lateral inputs from the coastline) on the acid-base buffering capacity, and overall biogeochemistry, of the North Sea. Analyses of both basin-wide observations in the North Sea and transects through tidal basins at the North-Frisian coastline, reveal that surface distributions of the d13C signature of dissolved inorganic carbon (DIC) are predominantly controlled by a balance between biological production and respiration. In particular, variability in metabolic DIC throughout stations in the well-mixed southern North Sea indi- cates the presence of an external carbon source, which is traced to the European continental coastline using naturally occurring radium isotopes (224Ra and 228Ra). 228Ra is also shown to be a highly effective tracer of North Sea total alkalinity (AT) compared to the more conventional use of salinity. Coastal inputs of meta- bolic DIC and AT are calculated on a basin-wide scale, and ratios of these inputs suggest denitrification as a primary metabolic pathway for their formation. The AT input paralleling the metabolic DIC release prevents a significant decline in pH as compared to aerobic (i.e., unbuffered) release of metabolic DIC. Finally, long- term pH trends mimic those of riverine nitrate loading, highlighting the importance of coastal AT production via denitrification in regulating pH in the southern North Sea.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Different types of seep carbonates were recovered from the 'Kouilou pockmarks' on the Congo deep-sea fan in approximately 3100 m water depth. The carbonate aggregates are represented by pyritiferous nodules, crusts and slabs, tubes, and filled molds. The latter are interpreted to represent casts of former burrows of bivalves and holothurians. The nodules consisting of high-Mg-calcite apparently formed deeper within the sediments than the predominantly aragonitic crusts and slabs. Nodule formation was caused by anaerobic oxidation of methane dominantly involving archaea of the phylogenetic ANME-1 group, whereas aragonitic crusts resulted from the activity of archaea of the ANME-2 cluster. Evidence for this correlation is based on the distribution of specific biomarkers in the two types of carbonate aggregates, showing higher hydroxyarchaeol to archaeol ratios in the crusts as opposed to nodules. Formation of crusts closer to the seafloor than nodules is indicated by higher carbonate contents of crusts, probably reflecting higher porosities of the host sediment during carbonate formation. This finding is supported by lower d18O values of crusts, agreeing with precipitation from pore waters similar in composition to seawater. The aragonitic mineralogy of the crusts is also in accord with precipitation from sulfate-rich pore waters similar to seawater. Moreover, the interpretation regarding the relative depth of formation of crusts and nodules agrees with the commonly observed pattern that ANME-1 archaea tend to occur deeper in the sediment than members of the ANME-2 group. Methane represents the predominant carbon source of all carbonates (d13C values as low as -58.9 per mil V-PDB) and the encrusted archaeal biomarkers (d13C values as low as -140 per mil V-PDB). Oxygen isotope values of some nodular carbonates, ranging from + 3.9 to + 5.1per mil V-PDB, are too high for precipitation in equilibrium with seawater, probably reflecting the destabilization of gas hydrates, which are particularly abundant at the Kouilou pockmarks.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An area of massive barite precipitations was studied at a tectonic horst in 1500 m water depth in the Derugin Basin, Sea of Okhotsk. Seafloor observations and dredge samples showed irregular, block- to column-shaped barite build-ups up to 10 m high which were scattered over the seafloor along an observation track 3.5 km long. High methane concentrations in the water column show that methane expulsion and probably carbonate precipitation is a recently active process. Small fields of chemoautotrophic clams (Calyptogena sp., Acharax sp.) at the seafloor provide additional evidence for active fluid venting. The white to yellow barites show a very porous and often layered internal fabric, and are typically covered by dark-brown Mn-rich sediment; electron microprobe spectroscopy measurements of barite sub-samples show a Ba substitution of up to 10.5 mol% of Sr. Rare idiomorphic pyrite crystals (1%) in the barite fabric imply the presence of H2S. This was confirmed by clusters of living chemoautotrophic tube worms (1 mm in diameter) found in pores and channels within the barite. Microscopic examination showed that micritic aragonite and Mg-calcite aggregates or crusts are common authigenic precipitations within the barite fabric. Equivalent micritic carbonates and barite carbonate cemented worm tubes were recovered from sediment cores taken in the vicinity of the barite build-up area. Negative ?13C values of these carbonates (>?43.5? PDB) indicate methane as major carbon source; ?18O values between 4.04 and 5.88? PDB correspond to formation temperatures, which are certainly below 5°C. One core also contained shells of Calyptogena sp. at different core depths with 14C-ages ranging from 20 680 to >49 080 yr. Pore water analyses revealed that fluids also contain high amounts of Ba; they also show decreasing SO42- concentrations and a parallel increase of H2S with depth. Additionally, S and O isotope data of barite sulfate (?34S: 21.0-38.6? CDT; ?18O: 9.0-17.6? SMOW) strongly point to biological sulfate reduction processes. The isotope ranges of both S and O can be exclusively explained as the result of a mixture of residual sulfate after a biological sulfate reduction and isotopic fractionation with 'normal' seawater sulfate. While massive barite deposits are commonly assumed to be of hydrothermal origin, the assemblage of cheomautotrophic clams, methane-derived carbonates, and non-thermally equilibrated barite sulfate strongly implies that these barites have formed at ambient bottom water temperatures and form the features of a Giant Cold Seep setting that has been active for at least 49 000 yr.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

New data on phosphorites collected by dredging and trawling at depths from 2700 to 520 m in the open Atlantic Ocean (i.e. outside of the shelf and the continental slope) are reported. Aphanitic, granular, brecciated, and conglomerate-like types are distinguished among the phosphorites. A comparison of the studied phosphorites with ones from the Atlantic shelf of Africa and from seamounts of other oceans is made.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Marine organic matter (OM) sinks from surface waters to the seafloor via the biological pump. Benthic communities, which use this sedimented OM as energy and carbon source, produce dissolved organic matter (DOM) in the process of remineralization, enriching the sediment porewater with fresh DOM compounds. We hypothesized that in the oligotrophic deep Arctic basin the molecular signal of freshly deposited primary produced OM is restricted to the surface sediment pore waters which should differ from bottom water and deeper sediment pore water in DOM composition. This study focused on: 1) the molecular composition of the DOM in sediment pore waters of the deep Eurasian Arctic basins, 2) whether the signal of marine vs. terrigenous DOM is represented by different compounds preserved in the sediment pore waters and 3) whether there is any relation between Arctic Ocean ice cover and DOM composition. Molecular data, obtained via 15 Tesla Fourier transform ion cyclotron resonance mass spectrometer, were correlated with environmental parameters by partial least square analysis. The fresher marine detrital OM signal from surface waters was limited to pore waters from < 5 cm sediment depth. The productive ice margin stations showed higher abundances of peptides, unsaturated aliphatics and saturated fatty acids formulae, indicative of fresh OM/pigments deposition, compared to northernmost stations which had stronger aromatic signals. This study contributes to the understanding of the coupling between the Arctic Ocean productivity and its depositional regime, and how it will be altered in response to sea ice retreat and increasing river runoff.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

New data on phosphorites collected by dredging and trawling at depths from 2700 to 520 m in the open Atlantic Ocean (i.e. outside of the shelf and the continental slope) are reported. Aphanitic, granular, brecciated, and conglomerate-like types are distinguished among the phosphorites. A comparison of the studied phosphorites with ones from the Atlantic shelf of Africa and from seamounts of other oceans is made.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sediment cores from the Amazon deep sea fan recovered during R/V Meteor cruise 16-2 show in detail the modern areal distribution of sedimentary organic carbon, stable organic carbon isotopes of the organic matter (OM), as well as variations in the depositional processes. In addition, we studied up to 300 m long drilled sediment records recovered during ODP Leg 155 which allow evaluation of temporal variations on the Amazon fan. Our results reveal new evidence for a very rapid change of fan depositional processes and organic carbon source at times of sea-level change over the middle and lower Amazon fan. To estimate the amount of terrestrial organic carbon stored in sediments from the last glacial in the Amazon fan we used stable organic carbon isotopes of the OM (delta13Corg), organic carbon content (Corg), and age models based on oxygen isotopes, faunal data, and magnetic excursions. Following our results, the organic carbon accumulation on the Amazon deep sea fan is controlled by glacio-eustatic sea-level oscillations. Interglacial sea-level high stand sediments are dominated by marine OM whereas during glacial sea-level low stands terrestrial organic carbon is transported beyond the continental shelf through the Amazon canyon and deposited directly onto the Amazon deep sea fan. Glacial sediments of the Amazon fan stored approximately 73*10**15 g terrestrial Corg in 20,000 years or 3.7*10**12 g terrestrial Corg/yr (equivalent to 7-12% of the riverine organic carbon discharge; assuming constant paleo discharge), which is about the same amount of terrestrial organic carbon as deposited on the Amazon shelf today (3.1*10**12 g terrestrial Corg/yr or 6-10% of the modern riverine organic carbon discharge).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laminated sediments are unique archives of palaeoenvironmental and palaeoceanographic conditions, recording changes on seasonal and interannual timescales. Diatom-rich laminated marine sediments are examined from Dumont d'Urville Trough, East Antarctic Margin, to determine changes in environmental conditions on the continental shelf from 1136 to 3122 cal. yr BP. Scanning electron microscope backscattered electron imagery (BSEI) and secondary electron imagery are used to analyse diatom assemblages from laminations and to determine interlamina relationships. Diatom observations are quantified with conventional assemblage counts. Laminae are primarily classified according to visually dominant species identified in BSEI and, secondarily, by terrigenous content. Nine lamina types are identified and are characterized by: Hyalochaete Chaetoceros spp. resting spores (CRS); CRS and Fragilariopsis spp.; Fragilariopsis spp.; Corethron pennatum and Rhizosolenia spp.; C. pennatum; Rhizosolenia spp.; mixed diatom assemblage; Stellarima microtrias resting spores (RS), Porosira glacialis RS and Coscinodiscus bouvet; and P. glacialis RS. Formation of each lamina type is controlled by seasonal changes in sea ice cover, nutrient levels and water column stability. Quantitative diatom assemblage analysis revealed that each lamina type is dominated by CRS and Fragilariopsis sea ice taxa, indicating that sea ice cover was extensive and persistent in the late Holocene. However the lamina types indicate that the sea ice regime was not consistent throughout this period, notably that a relatively warmer period, ~3100 to 2500 cal. yr BP, was followed by cooling which resulted in an increase in year round sea ice by ~1100 cal. yr BP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oceanic authigenic carbonates are classified according to origin of the carbonate carbon source using a complex methodology that includes methods of sedimentary petrography, mineralogy, isotope geochemistry, and microbiology. Mg-calcite (protodolomite) and aragonite predominate among the authigenic carbonates. All authigenic carbonates are depleted in 13C and enriched in 18O (in PDB system) that indicates biological fractionation of isotopes during carbonate formation. Obtained results show that authigenic carbonate formation is a biogeochemical (microbial) process, which involves carbon from ancient sedimentary rocks, abiogenic methane, and bicarbonate-ion of hydrothermal fluids into the modern carbon cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two active chemoherm build-ups growing freely up into the oceanic water column, the Pinnacle and the South East-Knoll Chemoherms, have been discovered at Hydrate Ridge on the Cascadia continental margin. These microbially-mediated carbonate formations rise above the seafloor by several tens of meters and display a pinnacle-shaped morphology with steep flanks. The recovered rocks are pure carbonates dominated by aragonite. Based on fabric and mineralogic composition different varieties of authigenic aragonite can be distinguished. Detailed visual and petrographic investigations unambiguously reveal the involvement of microbes during the formation of the carbonates. The fabric of the cryptocrystalline and fibrous aragonite can be described as thrombolitic. Fossilized microbial filaments in the microcrystalline aragonite indicate the intimate relationship between microbes and carbonates. The strongly 13C-depleted carbon isotope values of the samples (as low as -48.1 per mill PDB) are characteristic of methane as the major carbon source for the carbonate formation. The methane-rich fluids from which the carbonates are precipitated originate most probably from a gas reservoir below the bottom-simulating reflector (BSR) and rise through fault systems. The d18O values of the aragonitic chemoherm carbonates are substantially higher (as high as 5.0 per mill PDB) than the expected equilibrium value for an aragonite forming from ambient seawater (3.5 per mill PDB). As a first approximation this indicates formation from glacial ocean water but other factors are considered as well. A conceptual model is presented for the precipitation of these chemoherm carbonates based on in situ observations and the detailed petrographic investigation of the carbonates. This model explains the function of the consortium of archaea and sulfate-reducing bacteria that grows on the carbonates performing anaerobic oxidation of methane (AOM) and enabling the precipitation of the chemoherms above the seafloor surrounded by oxic seawater. Beggiatoa mats growing on the surface of the chemoherms oxidize the sulfide provided by sulfate-dependent anaerobic oxidation of methane within an oxic environment. The contact between Beggiatoa and the underlying microbial consortium represents the interface between the overlying oxic water column and an anoxic micro-environment where carbonate formation takes place.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methane seepage leads to Mg-calcite and aragonite precipitation at a depth of 4,850 m on the Aleutian accretionary margin. Stromatolitic and oncoid growth structures imply encrustation of microorganisms (microbial mats) in the host sediment with a unique growth direction downward into the sediment, forming crust-shaped lithologies. Biomarker investigations of the residue after carbonate dissolution show strong enrichments in crocetane and archaeol, which contain extremely low d13C values. This indicates the presence of methane-consuming archaea, and d13C values of -42 to -51 per mill PDB indicate that methane is the carbon source for the carbonate crusts. Thus, it appears that stromatolitic encrustations of methanotrophic anaerobic archaea probably occurs in a consortium with sulphate-reducing bacteria and that carbonate precipitation proceeds downward into the sediment, where ascending cold fluids provide a methane source. Strontium and oxygen isotope analyses as well as 14C ages of the carbonates suggest that the fluids come from deep within the sediment and that carbonate precipitation began about 3,000 years ago.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The radiocarbon contents of various biomarkers extracted from the varve-counted sediments of Saanich Inlet, Canada, were determined to assess their applicability for dating purposes. Calibrated ages obtained from the marine planktonic archaeal biomarker crenarchaeol compared favorably with varve-count ages. The same conclusion could be drawn for a more general archaeal biomarker (GDGT-0), although this biomarker proved to be less reliable due to its less-specific origin. The results also lend support to earlier indications that marine crenarchaeota use dissolved inorganic carbon (DIC) as their carbon source. The average reservoir age offset DR of 430 years, determined using the crenarchaeol radiocarbon ages, varied by ±110 years. This may be caused by natural variations in ocean-atmosphere mixing or upwelling at the NE Pacific coast but variability may also be due to an inconsistency in the marine calibration curve when used at sites with high reservoir ages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Results of mineralogical and isotopic analyzes of sulfur and carbon in carbonate nodules and host bottom sediments and results of 14C measurement in carbonate nodules are reported. It is proved that the carbonate nodules formed 11-22 thousand years ago in anaerobic diagenesis of bottom sediments rich in organic matter. Isotopic light metabolic carbon dioxide was a source of carbonate for nodules. It formed during microbial degradation of organic matter of bottom sediments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An area of massive barite precipitations was studied at a tectonic horst in 1500 m water depth in the Derugin Basin, Sea of Okhotsk. Seafloor observations and dredge samples showed irregular, block- to column-shaped barite build-ups up to 10 m high which were scattered over the seafloor along an observation track 3.5 km long. High methane concentrations in the water column show that methane expulsion and probably carbonate precipitation is a recently active process. Small fields of chemoautotrophic clams (Calyptogena sp., Acharax sp.) at the seafloor provide additional evidence for active fluid venting. The white to yellow barites show a very porous and often layered internal fabric, and are typically covered by dark-brown Mn-rich sediment; electron microprobe spectroscopy measurements of barite sub-samples show a Ba substitution of up to 10.5 mol% of Sr. Rare idiomorphic pyrite crystals (~1%) in the barite fabric imply the presence of H2S. This was confirmed by clusters of living chemoautotrophic tube worms (1 mm in diameter) found in pores and channels within the barite. Microscopic examination showed that micritic aragonite and Mg-calcite aggregates or crusts are common authigenic precipitations within the barite fabric. Equivalent micritic carbonates and barite carbonate cemented worm tubes were recovered from sediment cores taken in the vicinity of the barite build-up area. Negative d13C values of these carbonates (>-43.5 per mill PDB) indicate methane as major carbon source; d18O values between 4.04 and 5.88 per mill PDB correspond to formation temperatures, which are certainly below 5°C. One core also contained shells of Calyptogena sp. at different core depths with 14C-ages ranging from 20 680 to >49 080 yr. Pore water analyses revealed that fluids also contain high amounts of Ba; they also show decreasing SO4**2- concentrations and a parallel increase of H2S with depth. Additionally, S and O isotope data of barite sulfate (d34S: 21.0-38.6 per mill CDT; d18O: 9.0-17.6 per mill SMOW) strongly point to biological sulfate reduction processes. The isotope ranges of both S and O can be exclusively explained as the result of a mixture of residual sulfate after a biological sulfate reduction and isotopic fractionation with 'normal' seawater sulfate. While massive barite deposits are commonly assumed to be of hydrothermal origin, the assemblage of cheomautotrophic clams, methane-derived carbonates, and non-thermally equilibrated barite sulfate strongly implies that these barites have formed at ambient bottom water temperatures and form the features of a Giant Cold Seep setting that has been active for at least 49 000 yr.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Authigenic carbonates were collected from methane seeps at Hydrate Hole at 3113 m water depth and Diapir Field at 2417 m water depth on the northern Congo deep-sea fan during RV Meteor cruise M56. The carbonate samples analyzed here are nodules, mainly composed of aragonite and high-Mg calcite. Abundant putative microbial carbonate rods and associated pyrite framboids were recognized within the carbonate matrix. The d13C values of the Hydrate Hole carbonates range from -62.5 permil to -46.3 permil PDB, while the d13C values of the Diapir Field carbonate are somewhat higher, ranging from -40.7 permil to -30.7 permil PDB, indicating that methane is the predominant carbon source at both locations. Relative enrichment of 18O (d18O values as high as 5.2 permil PDB) are probably related to localized destabilization of gas hydrate. The total content of rare earth elements (REE) of 5% HNO3-treated solutions derived from carbonate samples varies from 1.6 ppm to 42.5 ppm. The shale-normalized REE patterns all display positive Ce anomalies (Ce/Ce* > 1.3), revealing that the carbonates precipitated under anoxic conditions. A sample from Hydrate Hole shows a concentric lamination, corresponding to fluctuations in d13C values as well as trace elements contents. These fluctuations are presumed to reflect changes of seepage flux.