7 resultados para calligraphy, landscape
em Publishing Network for Geoscientific
Resumo:
Permafrost-related processes drive regional landscape dynamics in the Arctic terrestrial system. A better understanding of past periods indicative of permafrost degradation and aggradation is important for predicting the future response of Arctic landscapes to climate change. Here, we used a multi-proxy approach to analyze a ~4 m long sediment core from a drained thermokarst lake basin on the northern Seward Peninsula in western Arctic Alaska (USA). Sedimentological, biogeochemistical, geochronological, micropaleontological (ostracoda, testate amoeba) and tephra analyses were used to determine the long-term environmental Early-Wisconsin to Holocene history preserved in our core for Central Beringia. Yedoma accumulation dominated throughout the Early to Late-Wisconsin but was interrupted by wetland formation from 44.5 to 41.5 ka BP. The latter was terminated by deposition of 1 m of volcanic tephra, most likely originating from the South Killeak Maar eruption at about 42 ka BP. Yedoma deposition continued until 22.5 ka BP and was followed by a depositional hiatus in the sediment core between 22.5 and 0.23 ka BP. We interpret this hiatus as due to intense thermokarst activity in the areas surrounding the site, which served as a sediment source during the Late-Wisconsin to Holocene climate transition. The lake forming the modern basin on the upland initiated around 0.23 ka BP, which drained catastrophically in spring 2005. The present study emphasizes that Arctic lake systems and periglacial landscapes are highly dynamic and permafrost formation as well as degradation in Central Beringia was controlled by regional to global climate patterns and as well as by local disturbances.
Resumo:
Arctic permafrost landscapes are among the most vulnerable and dynamic landscapes globally, but due to their extent and remoteness most of the landscape changes remain unnoticed. In order to detect disturbances in these areas we developed an automated processing chain for the calculation and analysis of robust trends of key land surface indicators based on the full record of available Landsat TM, ETM +, and OLI data. The methodology was applied to the ~ 29,000 km**2 Lena Delta in Northeast Siberia, where robust trend parameters (slope, confidence intervals of the slope, and intercept) were calculated for Tasseled Cap Greenness, Wetness and Brightness, NDVI, and NDWI, and NDMI based on 204 Landsat scenes for the observation period between 1999 and 2014. The resulting datasets revealed regional greening trends within the Lena Delta with several localized hot-spots of change, particularly in the vicinity of the main river channels. With a 30-m spatial resolution various permafrost-thaw related processes and disturbances, such as thermokarst lake expansion and drainage, fluvial erosion, and coastal changes were detected within the Lena Delta region, many of which have not been noticed or described before. Such hotspots of permafrost change exhibit significantly different trend parameters compared to non-disturbed areas. The processed dataset, which is made freely available through the data archive PANGAEA, will be a useful resource for further process specific analysis by researchers and land managers. With the high level of automation and the use of the freely available Landsat archive data, the workflow is scalable and transferrable to other regions, which should enable the comparison of land surface changes in different permafrost affected regions and help to understand and quantify permafrost landscape dynamics.
Resumo:
To determine the influence of fire and thermokarst in a boreal landscape, we investigated peat cores within and adjacent to a permafrost collapse feature on the Tanana River Floodplain of Interior Alaska. Radioisotope dating, diatom assemblages, plant macrofossils, charcoal fragments, and carbon and nitrogen content of the peat profile indicate ~600 years of vegetation succession with a transition from a terrestrial forest to a sedge-dominated wetland over 100 years ago, and to a Sphagnum-dominated peatland in approximately 1970. The shift from sedge to Sphagnum, and a decrease in the detrended tree-ring width index of black spruce trees adjacent to the collapse coincided with an increase in the growing season temperature record from Fairbanks. This concurrent wetland succession and reduced growth of black spruce trees indicates a step-wise ecosystem-level response to a change in regional climate. In 2001, fire was observed coincident with permafrost collapse and resulted in lateral expansion of the peatland. These observations and the peat profile suggest that future warming and/or increased fire disturbance could promote permafrost degradation, peatland expansion, and increase carbon storage across this landscape; however, the development of drought conditions could reduce the success of both black spruce and Sphagnum, and potentially decrease the long-term ecosystem carbon storage.
Resumo:
Ousteri Lake is popularly called Ousteri which is a word formed out of the fusion of Tamil words Oussudu (a proper noun) and eri (meaning a lake). Ousteri is an inter-state lake about 50 percent of its waterspread lies in Puducherry and the rest in Tamil Nadu of India. The landscape survey of the entire Ousteri Lake has been collected and reported in the article. Additionally provides feedback from all category of stakeholders to identify whether the Ousteri lake is worth to be recognised under Ramsar Convention or not.
Resumo:
From the 12th until the 17th of July 2016, research vessel Maria S. Merian entered the Nordvestfjord of Scorsby Sound (East Greenland) as part of research cruise MSM56, "Ecological chemistry in Arctic fjords". A large variety of chemical and biological parameters of fjord and meltwater were measured during this cruise to characterize biogeochemical fluxes in arctic fjords. The photo documentation described here was a side project. It was started when we were close to the Daugaard-Jensen glacier at the end of the Nordvestfjord and realized that not many people have seen this area before and photos available for scientists are probably rare. These pictures shall help to document climate and landscape changes in a remote area of East Greenland. Pictures were taken with a Panasonic Lumix G6 equipped with either a 14-42 or 45-150 objective (zoom factor available in jpg metadata). Polarizer filters were used on both objectives. The time between taking the pictures and writing down the coordinates was maximally one minute but usually shorter. The uncertainty in position is therefore small as we were steaming slowly most of the time the pictures were taken (i.e. below 5 knots). I assume the uncertainty is in most cases below 200 m radius of the noted position. I did not check the direction I directed the camera to with a compass at the beginning. Hence, the direction that was noted is an approximation based on the navigation map and the positioning of the ship. The uncertainty was probably around +/- 40° but initially (pictures 1-17) perhaps even higher as this documentation was a spontaneous idea and it took some time to get the orientation right. It should be easy, however, to find the location of the mountains and glaciers when being on the respective positions because the mountains have a quite characteristic shape. In a later stage of this documentation, I took pictures from the bridge and used the gyros to approximate the direction the camera was pointed at. Here the uncertainty was much lower (i.e. +/- 20° or better). Directions approximated with the help of gyros have degree values in the overview table. The ship data provided in the MSM56 cruise report will contain all kinds of sensor data from Maria S. Merian sensor setup. This data can also be used to further constrain the position the pictures were taken because the exact time a photo was shot is noted in the metadata of the .jpg photo file. The shipboard clock was set on UTC. It was 57 minutes and 45 seconds behind the time in the camera. For example 12:57:45 on the camera was 12:00:00 UTC on the ship. All pictures provided here can be used for scientific purposes. In case of usage in presentations etc. please acknowledge RV Maria S. Merian (MSM56) and Lennart T. Bach as author. Please inform me and ask for reprint permission in case you want to use the pictures for scientific publications. I would like to thank all participants and the crew of Maria S. Merian Cruise 56 (MSM56, Ecological chemistry in Arctic fjords).
Resumo:
Requirements for space based monitoring of permafrost features had been already defined within the IGOS Cryosphere Theme Report at the start of the IPY in 2007 (IGOS, 2007). The WMO Polar Space Task Group (PSTG, http://www.wmo.int/pages/prog/sat/pstg_en.php) identified the need to review the requirements for permafrost monitoring and to update these requirements in 2013. Relevant surveys with focus on satellite data are already available from the ESA DUE Permafrost User requirements survey (2009), the United States National Research Council (2014) and the ESA - CliC - IPA - GTN -P workshop in February 2014. These reports have been reviewed and specific needs discussed within the community and a white paper submitted to the WMO PSTG. Acquisition requirements for monitoring of especially terrain changes (incl. rock glaciers and coastal erosion) and lakes (extent, ice properties etc.) with respect to current satellite missions have been specified. About 50 locations ('cold spots') where permafrost (Arctic and Antarctic) in situ monitoring has been taking place for many years or where field stations are currently established have been identified. These sites have been proposed to the WMO Polar Space Task Group as focus areas for future monitoring by high resolution satellite data. The specifications of these sites including meta-data on site instrumentation have been published as supplement to the white paper (Bartsch et al. 2014, doi:10.1594/PANGAEA.847003). The representativity of the 'cold spots' around the arctic has been in the following assessed based on a landscape units product which has been developed as part of the FP7 project PAGE21. The ESA DUE Permafrost service has been utilized to produce a pan-arctic database (25km, 2000-2014) comprising Mean Annual Surface Temperature, Annual and summer Amplitude of Surface Temperature, Mean Summer (July-August) Surface Temperature. Surface status (frozen/unfrozen) related products have been also derived from the ESA DUE Permafrost service. This includes the length of unfrozen period, first unfrozen day and first frozen day. In addition, SAR (ENVISAT ASAR GM) statistics as well as topographic parameters have been considered. The circumpolar datasets have been assessed for their redundancy in information content. 12 distinct units could be derived. The landscape units reveal similarities between North Slope Alaska and the region from the Yamal Peninsula to the Yenisei estuary. Northern Canada is characterized by the same landscape units like western Siberia. North-eastern Canada shows similarities to the Laptev coast region. This paper presents the result of this assessment and formulates recommendations for extensions of the in situ monitoring networks and categorizes the sites by satellite data requirements (specifically Sentinels) with respect to the landscape type and related processes.