29 resultados para business cycles, investment cycles, spectral tests
em Publishing Network for Geoscientific
Resumo:
Well-developed Campanian to Maestrichtian pelagic cyclic sediments were recovered from Hole 762C on the Exmouth Plateau, off northwest Australia, during Ocean Drilling Program Leg 122. The cycles consist of nannofossil chalk (light beds) and clayey nannofossil chalk (dark beds). Both light and dark beds are strongly to moderately bioturbated, alternate on a decimeter scale, and exhibit gradual boundaries. Bioturbation introduces materials from a bed of one color into an underlying bed of another color, indicating that diagenesis is not responsible for the cyclicity. Differences in composition between the light and dark beds, revealed by calcium carbonate measurement and X-ray diffraction analysis, together with trace fossil evidence, indicate that the cycles in the sediments are a depositional feature. Diagenetic processes may have intensified the appearance of the cycles. Spectral analysis was applied to the upper Campanian to lower Maestrichtian cyclic sediments to examine the regularity of the cycles. Power spectra were calculated from time series using Walsh spectral analysis. The most predominant wavelengths of the color cycles are 34-41 cm and 71-84 cm. With an average sedimentation rate of 1.82 cm/k.y. in this interval, we found the time durations of the cycles to be around 41 k.y. and 21 k.y., respectively, comparable to the obliquity and precession periods of the Earth's rotation, which strongly suggests an orbital origin for the cycles. On the basis of sedimentological evidence and plate tectonic reconstruction, we propose the following mechanism for the formation of the cyclic sediments from Hole 762C. During the Late Cretaceous, when there was no large-scale continental glaciation, the cyclic variations in insolation, in response to cyclic orbital changes, controlled the alternation of two prevailing climates in the area. During the wetter, equable, and warmer climatic phases under high insolation, more clay minerals and other terrestrial materials were produced on land and supplied by higher runoff to a low bioproductivity ocean, and the dark clayey beds were deposited. During the drier and colder climatic phases under low insolation, fewer clay minerals were produced and put into the ocean, where bioproductivity was increased and the light beds were deposited.
Resumo:
An astronomically calibrated timescale has recently been established [Hilgen, 1991, doi:10.1016/0012-821X(91)90082-S; doi:10.1016/0012-821X(91)90206-W] for the Pliocene and earliest Pleistocene based on the correlation of dominantly precession controlled sedimentary cycles (sapropels and carbonate cycles) in Mediterranean marine sequences to the precession time series of the astronomical solution of Berger and Loutre [1991, doi:10.1016/0277-3791(91)90033-Q ] (hereinafter referred to as Ber90). Here we evaluate the accuracy of this timescale by (1) comparing the sedimentary cycle patterns with 65°N summer insolation time series of different astronomical solutions and (2) a cross-spectral comparison between the obliquity-related components in the 65°N summer insolation curves and high-resolution paleoclimatic records derived from the same sections used to construct the timescale. Our results show that the carbonate cycles older than 3.5 m.y. should be calibrated to one precession cycle older than previously proposed. Application of the astronomical solution of Laskar [1990, doi:10.1016/0019-1035(90)90084-M], (hereinafter referred to as La90) with present-day values for the dynamical ellipticity of the Earth and tidal dissipation by the Sun and Moon results in the best fit with the geological record, indicating that this solution is the most accurate from a geological point of view. Application of Ber90, or La90 solutions with dynamical ellipticity values smaller or larger than the present-day value, results in a less obvious fit with the geological record. This implies that the change in the planetary shape of the Earth associated with ice loading and unloading near the poles during the last 5.3 million years was too small to drive the precession into resonance with the perturbation term, s6-g6+g5, of Jupiter and Saturn. Our new timescale results in a slight but significant modification of all ages of the sedimentary cycles, bioevents, reversal boundaries, chronostratigraphic boundaries, and glacial cycles. Moreover, a comparison of this timescale with the astronomical timescales of ODP site 846 [Shackleton et al., 1995, doi:10.2973/odp.proc.sr.138.106.1995; doi:10.2973/odp.proc.sr.138.117.1995] and ODP site 659 [Tiedemann et al., 1994, doi:10.1029/94PA00208] indicates that all obliquity-related glacial cycles prior to ~4.7 Ma in ODP sites 659 and 846 should be correlated with one obliquity cycle older than previously proposed.
Resumo:
We report well-dated Late Cretaceous and Early Tertiary precessional climatic cycles, recorded by rhythmic carbonate maxima and minima in South Atlantic deep sea sites. Spectral analyses of digitized sediment color, a suitable carbonate proxy, show prominent regularities in the spacing marl-carbonate beds. Magnetostratigraphic dating over a number of magnetic chrons constrains the duration of the cycles, which can be detected over at least 20 Myr of sedimentation at 7 coring locations. Their mean absolute period of 23.5 +/- 4.4kyr agrees closely with the predicted late Cretaceous precessional period of 20.8 kyr. Because they can be matched to a physical forcing mechanism with a known repeat time, the cycles offer a new high-resolution tool to measure rates of climate change before and after the Cretaceous-Tertiary (K/T) boundary. From counts of carbonate cycles, we derive the position of the K/T boundary within C29R at 350 kyr after the base of the reversal. The constancy of cycle thickness (linearly related to sedimentation rate) and amplitude up to the "boundary clay" does not give evidence for climate instability preceding the boundary. Orbital chronometry records a step-function decrease in sediment accumulation rate at the Cretaceous-Tertiary boundary that is consistent with a geologically instantaneous event.
Resumo:
Sedimentary cycles are observed in the nearly complete Lower Cretaceous to Eocene pelagic carbonates at Site 762 on the Exmouth Plateau off northwest Australia. The high-frequency cycles of variable clay and foraminifers in nannofossil chalk appear as color cycles repeating on a scale of centimeters to meters in thickness. Measured cycle thickness indicate that the dominant cycles appear to be related to the precession and obliquity periods. To evaluate the high-frequency variance observed on the gamma-ray curve, spectral analysis of the log was performed on two intervals: 260 to 365 mbsf in the Cenozoic, and 555 to 685 mbsf in the Mesozoic. Average Cenozoic sedimentation rates of 10.5 m/m.y. are high enough to show that variance is present in the full suite of eccentricity bands (413-123-95 k.y.). Spectral analysis of the Mesozoic section failed to produce dominant peaks that could be correlated to predicted orbital periods. The bioturbation observed in the cores in this interval may be responsible for diluting the signal and producing high-frequency noise, which is manifested in the spectra as low, broad amplitude peaks. Orbital forcing may be affecting sedimentation on the Exmouth Plateau by influencing cycles of increased carbonate production or dissolution. Alternatively, clay abundance cycles may be related to eolian deposition during cycles of increased aridity in western Australia. Four low-frequency events were also identified at Site 762 from the core and log data. The duration of these events is approximately 13 m.y., and the conformable boundaries of these sedimentary cycles correlate with observed nondepositional surfaces in other wells in western Australia. The causal mechanism for the onset of these events may be eustatic, but alternatively may be regional tectonism with associated circulation pattern changes.
Resumo:
In the present paper ground truth and remotely sensed datasets were used for the investigation and quantification of the impact of Saharan dust on microwave propagation, the verification of theoretical results, and the validation of wind speeds determined by satellite microwave sensors. The influence of atmospheric dust was verified in two different study areas by investigations of single dust storms, wind statistics, wind speed scatter plots divided by the strength of Saharan dust storms, and wind speed differences in dependence of microwave frequencies and dust component of aerosol optical depth. An increase of the deviations of satellite wind speeds to ground truth wind speeds with higher microwave frequencies, with stronger dust storms, and with higher amount of coarse dust aerosols in coastal regions was obtained. Strong Saharan dust storms in coastal areas caused mean relative errors in the determination of wind speed by satellite microwave sensors of 16.3% at 10.7 GHz and of 20.3% at 37 GHz. The mean relative errors were smaller in the open sea area with 3.7% at 10.7 GHz and with 11.9% at 37 GHz.
Resumo:
The ~90-year Gleissberg and ~200-year de Vries cycles have been identified as two distinctive quasi-periodic components of Holocene solar activity. Evidence exists for the impact of such multi-decadal to centennial-scale variability in total solar irradiance (TSI) on climate, but concerning the ocean, this evidence is mainly restricted to the surface response. Here we use a comprehensive global climate model to study the impact of idealized solar forcing, representing the Gleissberg and de Vries cycles, on global ocean potential temperature at different depth levels, after a recent proxy record indicates a signal of TSI anomalies in the northeastern Atlantic at mid-depth. Potential impacts of TSI anomalies on deeper oceanic levels are climatically relevant due to their possible effect on ocean circulation by altering water mass characteristics. Simulated solar anomalies are shown to penetrate the ocean down to at least deep-water levels. Despite the fact that the two forcing periods differ only by a factor of ~2, the spatial pattern of response is significantly distinctive between the experiments, suggesting different mechanisms for solar signal propagation. These are related to advection by North Atlantic Deep Water flow (200-year forcing), and barotropic adjustment in the South Atlantic in response to a latitudinal shift of the westerly wind belt (90-year forcing).
Resumo:
An integrated high-resolution stratigraphy and orbital tuning is presented for the Loulja sections located in the Bou Regreg area on the Atlantic side of Morocco. The sections constitute the upward continuation of the upper Messinian Ain el Beida section and contain a well-exposed, continuous record of the interval straddling the Miocene-Pliocene (M-P) boundary. The older Loulja-A section, which covers the interval from ~5.59 to 5.12 Ma, reveals a dominantly precession-controlled color cyclicity that allows for a straightforward orbital tuning of the boundary interval and for detailed cyclostratigraphic correlations to the Mediterranean; the high-resolution and high-quality benthic isotope record allows us to trace the dominantly obliquity-controlled glacial history. Our results reveal that the M-P boundary coincides with a minor, partly precession-related shift to lighter "interglacial" values in d18O. This shift and hence the M-P boundary may not correlate with isotope stage TG5, as previously thought, but with an extra (weak) obliquity-controlled cycle between TG7 and TG5. Consequently, the M-P boundary and basal Pliocene flooding of the Mediterranean following the Messinian salinity crisis are not associated with a major deglaciation and glacio-eustatic sea level rise, indicating that other factors, such as tectonics, must have played a fundamental role. On the other hand, the onset of the Upper Evaporites in the Mediterranean marked by hyposaline conditions coincides with the major deglaciation step between marine isotope stage TG12 and TG11, suggesting that the associated sea level rise is at least partly responsible for the apparent onset of intermittently restricted marine conditions following the main desiccation phase. Finally, the Loulja-A section would represent an excellent auxiliary boundary stratotype for the M-P boundary as formally defined at the base of the Trubi marls in the Eraclea Minoa section on Sicily.
Resumo:
Water column stratification increased at climatic transitions from cold to warm periods during the late Quaternary and led to anoxic conditions and sapropel formation in the deep eastern Mediterranean basins. High-resolution data sets on sea-surface temperatures (SST) (estimated from UK'37 indices) and d18O of planktonic foraminifer calcite (d18Ofc) across late Pleistocene sapropel intervals show that d18Ofc decreased (between 1 and 4.6 per mil) and SST increased (between 0.7° and 6.7°C). Maximal d18Oseawater depletion of eastern Mediterranean surface waters at the transition is between 0.5 and 3.0 per mil, and in all but one case exceeded the depletion seen in a western Mediterranean core. The depletion in d18Oseawater is most pronounced at sapropel bases, in agreement with an initial sudden input of monsoon-derived freshwater. Most sapropels coincide with warming trends of SST. The density decrease by initial freshwater input and continued warming of the sea surface pooled fresh water in the surface layer and prohibited deep convection down to ageing deep water emplaced during cold and arid glacial conditions. An exception to this pattern is "glacial" sapropel S6; its largest d18Oseawater depletion (3 per mil) is almost matched by the depletion in the western Mediterranean Sea, and it is accompanied by surface water cooling following an initially rapid warming phase. A second period of significant isotopic depletion is in isotope stage 6 at the 150 kyr insolation maximum. While not expressed as a sapropel due to cold SST, it is in accord with a strengthened monsoon in the southern catchment.
Resumo:
Nutrient supply in the area off Northwest Africa is mainly regulated by two processes, coastal upwelling and deposition of Saharan dust. In the present study, both processes were analyzed and evaluated by different methods, including cross-correlation, multiple correlation, and event statistics, using remotely sensed proxies of the period from 2000 to 2008 to investigate their influence on the marine environment. The remotely sensed chlorophyll-a concentration was used as a proxy for the phytoplankton biomass stimulated by nutrient supply into the euphotic zone from deeper water layers and from the atmosphere. Satellite-derived alongshore wind stress and sea-surface temperature were applied as proxies for the strength and reflection of coastal upwelling processes. The westward wind and the dust component of the aerosol optical depth describe the transport direction of atmospheric dust and the atmospheric dust column load. Alongshore wind stress and induced upwelling processes were most significantly responsible for the surface chlorophyll-a variability, accounting for about 24% of the total variance, mainly in the winter and spring due to the strong north-easterly trade winds. The remotely sensed proxies allowed determination of time lags between biological response and its forcing processes. A delay of up to 16 days in the surface chlorophyll-a concentration due to the alongshore wind stress was determined in the northern winter and spring. Although input of atmospheric iron by dust storms can stimulate new phytoplankton production in the study area, only 5% of the surface chlorophyll-a variability could be ascribed to the dust component in the aerosol optical depth. All strong desert storms were identified by an event statistics in the time period from 2000 to 2008. The 57 strong storms were studied in relation to their biological response. Six events were clearly detected in which an increase of chlorophyll-a was caused by Saharan dust input and not by coastal upwelling processes. Time lags of <8 days, 8 days, and 16 days were determined. An increase in surface chlorophyll-a concentration of up to 2.4 mg m**3 after dust storms in which the dust component of the aerosol optical depth was up to 0.9 was observed.