19 resultados para bulk metallic glass

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thirty-nine medium and fine grained sandstones from between 19,26 and 147,23 mbsf in the Cape Roberts-l core (CRP-1) were analysed for 10 major and 16 trace elements. Using whole-lock compositions, 9 samples were selected for analyses of mineral and glass grains by energy dispersive electron microscope. Laser-Ablation Mass-Spectrometry was used to determine rare earth elements and 14 additional trace elements in glass shards, pyroxenes and feldspars in order to examine their contribution to the bulk rock chemistry. Geochemical data reveal the major contribution played by the Granite Harbour Intrusives to the whole rock composition, even if a significant input is supplied by McMurdo volcanics and Ferrar dolerite pyroxenes McMurdo volcanics were studied in detail; they appeal to derive from a variety of litologies, and a dominant role of wind transpoitation from exposures of volcanic rocks may be inferred from the contemporary occurrence of different compositions at all depths. Only at 116.55 mbsf was a thin layer of tephra found, linked to an explosive eruption McMurdo volcanic rocks exhibit larger abundances at depths above 62 mbsf, in correspondence with the onset of volcanic activity in the McMurdo Sound area. From 62 mbsf to the bottom of the core, McMurdo volcanics are less abundant and probably issued from some centres in the McMurdo Sound region. However, available data do not allow the exclusion of wind transport from some eruptive centres active in north Victoria Land at the beginning of the Miocene Epoch.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Massive clinoptilolite authigenesis was observed at about 1105 meters below sea floor (mbsf) in lower Miocene wellcompacted carbonate periplatform sediments from the Great Bahama Bank [Ocean Drilling Program, ODP Leg 166, Site 1007]. The diagenetic assemblage comprises abundant zeolite crystallized within foraminifer tests and sedimentary matrix, as well as Mg smectites. In carbonate-rich deposits, the formation of the zeolite requires a supply of silica. Thus, the objective of the study is to determine the origin of the silica supply, its diagenetic evolution, and consequently the related implications on interpretation of the sedimentary record, in terms of local or global paleoceanographic change. For lack of evidence for any volcaniclastic input or traces of Si-enriched deep fluids circulation, an in situ biogenic source of silica is validated by isotopic data and chemical modeling for the formation of such secondary minerals in shallow-water carbonate sequences. Geochemical and strontium isotopic data clearly establish the marine signature of the diagenetic zeolite, as well as its contemporaneous formation with the carbonate deposition (Sr model ages of 19.6-23.2 Ma). The test of saturation for the pore fluids specifies the equilibrium state of the present mineralogical assemblage. Seawater-rock modeling specifies that clinoptilolite precipitates from the dissolution of biogenic silica, which reacts with clay minerals. The amount of silica (opal-A) involved in the reaction has to be significant enough, at least 10 wt.%, to account for the observed content of clinoptilolite occurring at the most zeolite-rich level. Modeling also shows that the observed amount of clinoptilolite (~19%) reflects an in situ and short-term reaction due to the high reactivity of primary biogenic silica (opal-A) until its complete depletion. The episodic occurrence of these well-lithified zeolite-rich levels is consistent with the occurrence of seismic reflectors, particularly the P2 seismic sequence boundary located at 1115 mbsf depth and dated as 23.2 Ma. The age range of most zeolitic sedimentary levels (biostratigraphic ages of 21.5-22 Ma) correlates well with that of the early Miocene glaciation Mi-1 and Mi-1a global events. Thus, the clinoptilolite occurrence in the shallow carbonate platform environment far from volcanogenic supply, or in other sensitive marine areas, is potentially a significant new proxy for paleoproductivity and oceanic global events, such as the Miocene events, which are usually recognized in deep-sea pelagic sediments and high latitude deposits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbonate-free portions of Upper Cretaceous to Holocene sediment samples from the Kerguelen Plateau in the southern Indian Ocean were investigated by X-ray diffraction. Downhole variations in the content of opal-A, opal-CT, quartz, feldspar, barite, and clinoptilolite were studied at Site 737 on the northern Kerguelen Plateau and at Sites 744 and 738 on the southern Kerguelen Plateau. The variation of these components reflects temporal changes in the depositional history of the Kerguelen Plateau as well as major differences in the sedimentary evolution between the northern plateau and the southern plateau. Carbonate is the dominant component in the pelagic sediments on the Kerguelen Plateau. In addition, biogenic opal sedimentation plays an important role throughout most of the sequence. A major increase in opal accumulation is documented at all sites in late Miocene time, which is in accordance with the well-known increase in silica productivity probably caused by a major cooling step. Because of its position near the Polar Frontal Zone, sediments from Site 737 show a more extensive opal deposition than at Sites 744 and 738. An earlier productivity pulse is documented at Site 744 on the southern plateau within the early Oligocene, following the initial phase of intense East Antarctic glaciation. This cooling event resulted in higher amounts of ice-rafted terrigenous quartz and, to a lesser extent, feldspar. With the exception of the Site 744 sediments, opal deposition in Paleogene and older sediments can be reconstructed only from the diagenetic transformation products of opal-CT and probably clinoptilolite. In contrast to the southern sequence, on the northern Kerguelen Plateau higher amounts of clinoptilolite and no opal-CT were found. These major differences in the diagenetic environments may be due to extensive volcanism in the northern area. The volcanic influence at Site 737 is well recorded by the higher feldspar content and higher amounts of volcanic glass shards.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Altogether 513 samples from sediments of Cretaceous to Pleistocene age from DSDP Legs 56 and 57 were examined by x-ray methods. The main constituents are clay minerals, quartz, feldspar, opaline silica, and volcanic glass. The sediment composition reflects the position of the sites in relation to the main source area, the Japanese Island Arc. For example, relatively coarse-grained material rich in quartz and feldspar was deposited closest to the islands, whereas finer-grained material rich in clay minerals (mainly smectite and illite, with lesser amounts of kaolinite and chlorite) was deposited farther seaward. Vertical fluctuations in the composition of the sediments show the same trend in all sites and are caused mainly by a fluctuating contribution of biogenic silica with time. A trend reversal in the chlorite/kaolinite ratio at Site 438 supports the conclusion that the subsidence of the Oyashio ancient landmass took place during the middle Miocene. That ratio also indicates a northwest drift in the position of Site 436 by sea floor spreading. Oscillations of the illite/smectite ratio during the Pleistocene at Site 436 show the variations of climate during this period. During early diagenesis potassium is fixed in smectite. With increasing depth of burial a smectite-illite mixed layer is formed, with increasing illite layering. At Sites 434, 440, and 441, stepwise changes confirm intensive tectonic process at the midslope terrace and the lower inner slope of the Japan Trench.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high-resolution marine isotope climate record indicates pronounced global cooling during the Langhian (16-13.8 Ma), beginning with the warm middle Miocene climatic optimum and ending with significant Antarctic ice sheet expansion and the transition to "icehouse" conditions. Terrestrial paleoclimate data from this interval is sparse and sometimes conflicting. In particular, there are gaps in the terrestrial record in the Pacific Northwest during the late Langhian and early Serravallian between about 14.5 and 12.5 Ma. New terrestrial paleoclimate data from this time and region could reconcile these conflicting records. Paleosols are particularly useful for reconstructing paleoenvironment because the rate and style of pedogenesis is primarily a function of surface environmental conditions; however, complete and well-preserved paleosols are uncommon. Most soils form in erosive environments that are not preserved, or in environments such as floodplains that accumulate in small increments; the resulting cumulic soils are usually thin, weakly developed, and subject to diagenetic overprinting from subsequent soils. The paleosol at Cricket Flat in northeastern Oregon is an unusually complete and well-preserved paleosol from a middle Miocene volcanic sequence in the Powder River Volcanic Field. An olivine basalt flow buried the paleosol at approximately 13.8 ± 0.6 Ma, based on three 40Ar/39Ar dates on the basalt. We described the Cricket Flat paleosol and used its physical and chemical profile and micromorphology to assess pedogenesis. The Cricket Flat paleosol is an Ultisol-like paleosol, chemically consistent with a high degree of weathering. Temperature and rainfall proxies suggest that Cricket Flat received 1120 ± 180 mm precipitation y-1 and experienced a mean annual temperature of 14.5 ± 2.1 °C during the formation of the paleosol, significantly warmer and wetter than today. This suggests slower cooling after the middle Miocene climatic optimum than is seen in the existing paleosol record.