416 resultados para boundary element methods
em Publishing Network for Geoscientific
Resumo:
Samples from Ocean Drilling Program Hole 761C, collected on both sides of the Cretaceous/Tertiary boundary have been analyzed for their chemical and mineralogical content. The sediment consists of nannofossil ooze with variable amounts of clay. The boundary is marked by a color change associated with a nearly step-like decrease of the carbonate fraction. Paleomagnetic data and the drop of the carbonate content indicate that a strong reduction of the sedimentation rate occurred at the boundary and persisted for million of years. An iridium anomaly of 80 ng/cm**2, together with overabundances of Cr and Fe, are found in close coincidence with the planktonic crisis. These enrichments can be explained by the infall of =0.16 g/cm2 of Cl-like chondritic material. Co and Ni enrichments and a great quantity of Ni-rich magnetites are also observed in the basal Danian. These elements and minerals excepted, the composition of the insoluble fraction appears to be nearly unchanged across the boundary. Chemical and mineralogical observations support a cosmic origin for the Cretaceous/Tertiary event but do not reveal the presence of any significant impact ejecta.
Resumo:
New data on Ru/Ir abundance ratios are presented for nonmarine (Hell Creek, Montana; Frenchman River, Saskatchewan) and marine Cretaceous-Tertiary boundary sites (Brazos River, Texas; Beloc, Haiti; DSDP 577 and DSDP 596). The Ru/Ir ratio varies from 0.5 to 1 within 4000 km of Chicxulub and increases to 2-3 at paleodistances (65 Ma) of up to 12,000 km from the impact site. For CI chondrites, Ru/Ir = 1.5. A ballistic model of ejecta cloud cooling and expansion, which employs the available vapor-pressure versus temperature data for Ru and It, predicts qualitatively similar global variation in the Ru/Ir ratio but by only a factor of 1.5. We infer that several other factors, such as remobilization of PGE during diagenesis, preferential oxidation of Ru, condensation kinetics and atmospheric chemical and circulation processes, may account for the observed larger Ru/Ir variation.
Resumo:
Neutron activation analyses of iridium and other chemical elements were performed across a 1-m-thick, partly nonbioturbated, clay-rich interval at the Cretaceous/Tertiary boundary in ODP Hole 738C. The results show that the boundary interval holds one of the highest Ir enrichments (320 ng Ir/cm2) of all known Cretaceous/Tertiary boundary layers. Iridium concentrations are highest (18 ppb Ir, whole-rock samples) a few centimeters above the base of the clayrich interval and gradually tail off upsection. Compared with background levels the most Ir-rich interval also shows strongly enhanced concentrations of Cr (215 ppm) and slightly elevated Co concentrations (13 ppm). The Ir-rich interval shows low As (< 15 ppm) and Sb (<0.8 ppm) concentrations, a fact that is congruent with absence of abundant authigenic sulfides in the sediment. Irregularly distributed Fe enrichments and a greenish gray color of the Fe-rich intervals may indicate the presence of glauconitic clay minerals and suboxic, slightly reducing conditions during deposition. Rare earth element (REE) abundance patterns change considerably across the Cretaceous/Tertiary boundary interval, reflecting either a change in Cretaceous/Tertiary boundary seawater REE composition or the occurrence of different REE fractionation processes due to changing depositional environment. Element-vs.-element ratios of Hf, Ta, Th, U, Cs, and Sc are similar between the most Ir-rich layers of the boundary section and other levels with lower Ir concentrations. This may imply that the clay fraction of the Ir-rich layers of the Cretaceous/Tertiary boundary interval is made up predominantly of locally derived material. Calculated calcite-free abundances of Hf, Ta, Th, U, Cs, and Sc, on the other hand, are reconcilable with an extraneous origin of the bulk of the clay in the most Ir-rich layers. The Ir in the Cretaceous/Tertiary boundary clay-rich zone in Hole 738C is most likely derived from an earth-impacting asteroid; however, the origin of the clay-rich zone remains enigmatic.
Resumo:
Two gravity cores retrieved off NW Africa at the border of arid and subtropical environments (GeoB 13602-1 and GeoB 13601-4) were analyzed to extract records of Late Quaternary climate change and sediment export. We apply End Member (EM) unmixing to 350 acquisition curves of isothermal remanent magnetization (IRM). Our approach enables to discriminate rock magnetic signatures of aeolian and fluvial material, to determine biomineralization and reductive diagenesis. Based on the occurrence of pedogenically formed magnetic minerals in the fluvial and aeolian EMs, we can infer that goethite formed in favor to hematite in more humid climate zones. The diagenetic EM dominates in the lower parts of the cores and within a thin near-surface layer probably representing the modern Fe**2+/Fe**3+ redox boundary. Up to 60% of the IRM signal is allocated to a biogenic EM underlining the importance of bacterial magnetite even in siliciclastic sediments. Magnetosomes are found well preserved over most of the record, indicating suboxic conditions. Temporal variations of the aeolian and fluvial EMs appear to faithfully reproduce and support trends of dry and humid conditions on the continent. The proportion of aeolian to fluvial material was dramatically higher during Heinrich Stadials, especially during Heinrich Stadial 1. Dust export from the Arabian-Asian corridor appears to vary contemporaneous to increased dust fluxes on the continental margin of NW Africa emphasizing that melt-water discharge in the North Atlantic had an enormous impact on atmospheric dynamics.
Resumo:
An iridium anomaly has been found in coincidence with the known microtektite level in cores from Deep Sea Drilling Project site 149 in the Caribbean Sea. The iridium was probably not in the microtektites but deposited simultaneously with them; this could occur if the iridium was deposited from a dust cloud resulting from a bolide impact, as suggested for the anomaly associated with the Cretaceous-Tertiary boundary. Other workers have deduced that the microtektites are part of the North American strewn tektite field, which is dated at about 34 million years before present, and that the microtektite horizon in deep-sea cores is synchronous with the extinction of five radiolarian species. Mass extinctions also occur in terrestrial mammals within 4 million years of this time. The iridium anomaly and the tektites and microtektites are supportive of a major bolide impact about 34 million years ago.
Resumo:
Numerous large igneous provinces formed in the Pacific Ocean during Early Cretaceous time, but their origins and relations are poorly understood. We present new geochronological and geochemical data on rocks from the Manihiki Plateau and compare these results to those for other Cretaceous Pacific plateaus. A dredged Manihiki basalt gives an 40Ar-39Ar age of 117.9+/-3.5 Ma (2 sigma), essentially contemporaneous with the Ontong Java Plateau ~2500 km to the west, and the possibly related Hikurangi Plateau ~3000 km to the south. Drilled Manihiki lavas are tholeiitic with incompatible trace element abundances similar to those of Ontong Java basalts. These lavas may result from high degrees of partial melting during the main eruptive phase of plateau formation. There are two categories of dredged lavas from the Danger Islands Troughs, which bisect the plateau. The first is alkalic lavas having strong enrichments in light rare earth and large-ion lithophile elements; these lavas may represent late-stage activity, as one sample yields an 40Ar-39Ar age of 99.5+/-0.7 Ma. The second category consists of tholeiitic basalts with U-shaped incompatible element patterns and unusually low abundances of several elements; these basalts record a mantle component not previously observed in Manihiki, Ontong Java, or Hikurangi lavas. Their trace element characteristics may result from extensive melting of depleted mantle wedge material mixed with small amounts of volcaniclastic sediment. We are unaware of comparable basalts elsewhere.
Resumo:
Depth profiles of major element and rare earth element (REE) abundances in sediment samples (mainly siliceous ooze and clay) recovered from Holes 1179B and 1179C at Site 1179, Ocean Drilling Program Leg 191 (41.4°N, 159.6°E) were determined. The oxidation states of Mn and Ce were determined by X-ray absorption near-edge structure. Some geochemical indicators were tested, including the MnO/TiO2 ratios, a bivariate diagram of La/Ce vs. Al2O3/(Al2O3+Fe2O3), and other discrimination diagrams. The oxidation state of Mn is reduced Mn(II) in the depth profile below 0.60 meters below seafloor (mbsf), which is consistent with relatively low and high abundances of Mn in the sediments and pore waters, respectively. It is possible that the diagenetic effect on the oxidation state and abundance of Mn makes it difficult for the MnO/TiO2 ratio to reflect the depositional environment. The normalized ratio of La and Ce does not change very much with depth, suggesting that the diagenetic effect does not affect the REE signature in the sediments. On the diagram of La/Ce vs. Al2O3/(Al2O3+Fe2O3), the sediments studied here plot at the boundary of the pelagic and continental margin fields. This suggests that continental material has contributed to the sediment to some degree, even though Site 1179 is in a pelagic region of the northwestern Pacific Ocean, >1600 km from Japan.
Resumo:
We investigated minor element ratios (Sr/Ca and Mg/Ca) in bulk sediment samples from Sites 803-807 using a recently optimized sample treatment protocol for calcium-carbonate-rich sediments consisting of sequential reductive and ion exchange treatments. We evaluated this protocol relative to bulk sediment leaching using samples from Sites 804 and 806, the two end-member sites in the depth transect, reporting as well Mn/Ca and Fe/Ca ratios for sediments from these two sites processed by means of both methods. The Sr/Ca ratios were only slightly affected by the sample treatment, with an average reduction of 6%-7% caused primarily by the ion exchange step. The reductive sample treatment, designed to be effective at removing Mn-rich oxyhydroxides, has a major effect on Mg/Ca ratios, with up to 50% reduction, whereas little effect occurred in ion exchange alone on Mg/Ca ratios. The Mn/Ca and Fe/Ca ratios were not consistently offset by the sample treatment, and these ratios do not appear to be representative of calcite geochemistry reflecting either ocean history or diagenetic overprinting. Celestite solubility appears to be an important control on interstitial water Sr concentrations in these sites, and it must be considered when constructing Sr mass balance models of calcite recrystallization. Calcite Sr/Ca ratios (range 1-2 mmol/mol) are similar from site to site when plotted vs. age, with a pattern comparable to that for well-preserved foraminifer tests over the past 40 Ma. Interstitial water Mg and Ca gradients appear to reflect basement character and the intensity of alteration; they can vary substantially over a small area. Calcite Mg/Ca ratios (range 1.5-4.5 mmol/mol) differ from site to site, with generally higher ratios for sites at a shallower water depth. Increasing calcite Mg/Ca ratios correlate with decreasing Sr/Ca ratios in the treated samples. No consistent pattern exists for calcite Mg/Ca ratios vs. age or depth, nor is any direct correlation to interstitial water Mg/Ca ratios present.
Resumo:
Dansgaard-Oeschger (D-O) cycles in sediment at Site 1063 are characterized by distinct fluctuations in physical properties. Stadials are marked by low bulk density and interstadials by high bulk density. Compressional (P-)wave velocity is in phase with bulk density over some but not all depth intervals. Four of the D-O cycles straddling the oxygen isotope Stage 4/5 boundary have been studied in detail to understand the origin of the physical properties changes. Sediment on the Bermuda Rise is comprised of three main components: calcite, aluminosilicate minerals, and biogenic silica. Calcite concentrations vary from 1% to 43% of bulk sediment and are highest during interstadials. Aluminosilicate concentrations vary from 52% to 92% of bulk sediment and are highest during stadials. The major element ratios Al2O3/TiO2 and K2O/Al2O3 show increases across bulk density cycles, suggesting a change in the composition of aluminosilicates. This interpretation is supported by mineralogical analyses, which show a subtle change in clay composition. Biogenic silica concentrations vary from 0% to 23% of bulk sediment and are also highest during stadials. However, the abundance of silica varies significantly from one D-O cycle to another. Silt and fine sand abundance also increase during the first of the four stadials. This coarsening of sediment coincides with the increase in biogenic silica. The low grain density and high porosity associated with biogenic silica result in intervals of low bulk-sediment density. The abundance of biogenic silica closely matches P-wave velocity, suggesting that silica imparts a greater rigidity to the sediment.
Resumo:
Results of detailed mineralogical, chemical, and oxygen isotope analyses of the clay minerals and zeolites from two Cretaceous-Tertiary (K/T) boundary regions, Stevns Klint, Denmark, and Deep Sea Drilling Project (DSDP) Hole 465A in the north central Pacific Ocean, are presented. In the central part of the Stevns Klint K/T boundary layer, the only clay mineral detected by x-ray diffraction is a pure smectite with > 95 percent expandable layers. No detrital clay minerals or quartz were observed in the clay size fraction in these beds, whereas the clay minerals above and below the boundary layer are illite and mixed-layer smectite-illite of detrital origin as well as quartz. The mineralogical purity of the clay fraction, the presence of smectite only at the boundary, and the d18O value of the smectite (27.2 ± 0.2 per mil) suggest that it formed in situ by alteration of glass. Formation from impact rather than from volcanic glass is supported by its major element chemistry. The high content of iridium and other siderophile elements is not due to the cessation of calcium carbonate deposition and resulting slow sedimentation rates. At DSDP Hole 465A, the principal clay mineral in the boundary zone (80 to 143 centimeters) is a mixed-layer smectite-illite with >=90 percent expandable layers, accompanied by some detrital quartz and small amounts of a euhedral authigenic zeolite (clinoptilolite). The mixed-layer smectite-illite from the interval 118 to 120 centimeters in the zone of high iridium abundance has a very low rare earth element content; the negative cerium anomaly indicates formation in the marine environment. This conclusion is corroborated by the d18O value of this clay mineral (27.1 ± 0.2 per mil). Thus, this mixed-layer smectite-illite formed possibly from the same glass as the K/T boundary smectite at Stevns Klint, Denmark.