8 resultados para bioengineered microenvironments

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sedimentological and biostratigraphic investigations of 15 cores (total length: 88 m) from the vicinity of Great Meteor seamount (about 30° N, 28° W) showed that the calcareous ooze are asymmetrically distributed around the seamount and vertically differentiated into two intervals. East and west of the seampunt, the upper "A"-interval is characterized by yellowish-brown sediment colors and bioturbation; ash layers and diatoms are restricted to the eastern cores. On both seamount flanks, the sediment of the lower "B"-interval are white and very rich in CaCO3 with a major fine silt (2-16 µ) mode (mainly coccoliths). Lamination, manganese micronodules, Tertiary foraminifera and discoasters, and small limestone and basalt fragments are typical of the "B"-interval of the eastern cores only. The sediments contain abundant displaced material which was reworked from the upper parts of the seamount. The sedimentation around the seamount is strongly influenced by the kind of displaced material and the intensity of its differentiated dispersal: the sedimentation rates are generally higher on the east than on the west flank /e.g. in "B": 0.9 cm/1000 y in the W; 3.1 cm/1000 y in the E), and lower for the "A" than for the "B"-interval. The lamination is explained by the combination of increased sedimentation rates with a strong input of material poor in organic carbon producing a hostile environment for benthic life. The CaCO3 content of the core is highly influenced by the proportion of displaced bigenous carbonate material (mainly coccoliths). The genuine in-situ conditions of the dissolution facies are only reflected by the minimum CaCO3 values of the cores (CCD = about 5,500 m; first bend in dissolution curve = 4,000 m; ACD = about 3,400 m). The preservation of the total foraminiferal association depends on the proportions of in-situ versus displaced specimens. In greater water depths (stronger dissolution), for example, the preservation can be improved by the admixture of relatively well preserved displaced foraminifera. Carbonate cementation and the formation of manganese micronodules are restricted to microenvironments with locally increased organic carbon contents (e.g. pellets; foraminifera). The ash layers consist of redeposited, silicic volcanic glass of trachytic composition and Mio-Pliocene age; possibly, they can be derived from the upper part of the seamount. Siliceous organisms, especially diatoms, are frequent close to the ash layers and probably also redeposited. Their preservation was favoured by the increase of the SiO2 content in the pore water caused by the silicic volcanic glass. The cores were biostraftsraphically subdivided with the aid of planktonic foraminifera and partly alsococcoliths. In most cases, the biostratigraphically determined cold- and warm sections could be correlated from core to core. Almost all cores do not penetrate the Late Pleistocene. All Tertiary fossils are reworked. In general, the warm/cold boundary W2/C2 corresponds with the lithostratigraphic A/B boundray. Benthonic foraminifera indicate the original site deposition of the displaced material (summit plateau or flanks of the seamount). The asymmetric distribution of the sediments around the seamount east and west of the NE-directed antarctic bottom current (AABW) is explained by the distortion of the streamlines by the Coriolis force; by this process the current velocity is increased west of the seamount and decreased east of it. The different proportion of displaced material within the "A" and "B" interval is explained by changes of the intensity of the oceanic circulation. At the time of "B" the flow of the AABW around the seamount was stronger than during "A"; this can be inferred from the presence of characteristic benthonic foraminifera. The increased oceanic circulation implies an enhanced differentiation of the current velocities, and by that, also of the sedimentation rates, and intensifies the winnowed sediment material was transported downslope by turbid layers into the deep-sea, incorporated into the current system of the AABW, and asymmetrically deposited around the seamount.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron speciation was determined in hemiplegic sediments from a high productivity area to investigate systematically the early diagenetic reactivity of Fe. A combination of various leaching agents (1 M HCI, dithionite buffered in citrate/acetic acid, HF/H2SO4, acetic Cr(II)) was applied to sediment and extracted more than 80% of total Fe. Subsequent Fe species determination defined specific mineral fractions that are available for Fe reduction and fractions formed as products of Fe diagenesis. To determine the Fe speciation of (sheet) silicates we explored an extraction procedure (HF/H2SO4) and verified the procedure by application to standard rocks. Variations of Fe speciation of (sheet) silicates reflect the possible formation of Fe-bearing silicates in near surface sediments. The same fraction indicates a change in the primary input at greater depth, which is supported by other parameters. The Fe(II)/ Fe(III) -ratio of total sediment determined by extractions was compared with Mössbauer-spectroscopy ] at room temperature and showed agreement within 10%. M6ssbauer-spectroscopy indicates the occurrence of siderite in the presence of free sulfide and pyrite, supporting the importance of microenvironments during mineral formation. The occurrence of other Fe(II) bearing minerals such as ankerite (Ca-, Fe-, Mg-carbonate) can be presumed but remains speculative.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Five hundred meters of a unique Upper Cretaceous Cr-rich glauconitic sequence (Unit III) that overlies a 3-m-thick alkali-basalt flow with underlying epiclastic volcanogenic sediments was drilled at ODP Leg 120 Site 748. The Cr-rich glauconitic sequence is lithostratigraphically and biostratigraphically divided into three subunits (IIIA, IIIB, IIIC) that can also be recognized by the Cr concentration of the bulk sediment, which is low (<200 ppm) in Subunits IIIC and IIIA and high (400-800 ppm) in Subunit IIIB. The Cr enrichment is caused by Cr-spinel, which is the only significant heavy mineral component beside Fe-Ti ores. Other Cr-bearing components are glauconite pellets and possibly some other clay minerals. The glauconitic sequence of Subunit IIIB was formed by reworking of glauconite and volcanogenic components that were transported restricted distances and redeposited downslope by mass-transportation processes. The site of formation was a nearshore, shallow inner shelf environment, and final deposition may have been on the outer part of a narrow shelf, at the slope toward the restricted, probably synsedimentary, faulted Raggatt Basin. The volcanic edifices uncovered on land were tholeiitic basalts (T-MORB), alkali-basaltic (OIB) and (?)silicic volcanic complexes, and ultramafic rocks. The latter were the ultimate source for the Cr-spinel contribution. Terrestrial aqueous solutions carried Fe, K, Cr, Si, and probably Al into the marine environment, where, depending on the redox conditions of microenvironments in the sediment, green (Fe- and K-rich) or brown (Al-rich) glauconite pellets formed. The Upper Cretaceous glauconitic sequence at Site 748 on the Southern Kerguelen Plateau constitutes the transition in space and time from terrestrial to marine, from magmatically active subaerial to magmatically passive submarine conditions, and from a tranquil platform to active rifting conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification (OA) can have adverse effects on marine calcifiers. Yet, phototrophic marine calcifiers elevate their external oxygen and pH microenvironment in daylight, through the uptake of dissolved inorganic carbon (DIC) by photosynthesis. We studied to which extent pH elevation within their microenvironments in daylight can counteract ambient seawater pH reductions, i.e. OA conditions. We measured the O2 and pH microenvironment of four photosymbiotic and two symbiont-free benthic tropical foraminiferal species at three different OA treatments (~432, 1141 and 2151 µatm pCO2). The O2 concentration difference between the seawater and the test surface (delta O2) was taken as a measure for the photosynthetic rate. Our results showed that O2 and pH levels were significantly higher on photosymbiotic foraminiferal surfaces in light than in dark conditions, and than on surfaces of symbiont-free foraminifera. Rates of photosynthesis at saturated light conditions did not change significantly between OA treatments (except in individuals that exhibited symbiont loss, i.e. bleaching, at elevated pCO2). The pH at the cell surface decreased during incubations at elevated pCO2, also during light incubations. Photosynthesis increased the surface pH but this increase was insufficient to compensate for ambient seawater pH decreases. We thus conclude that photosynthesis does only partly protect symbiont bearing foraminifera against OA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Barite can precipitate in microenvironments in the water column (marine barite), from supersaturated pore fluids at the oxic-anoxic boundary within marine sediments and where Ba-rich pore fluids are expelled and come into contact with sulfate-rich seawater (diagenetic barite), or from hydrothermal solutions (hydrothermal barite). Barite is relatively resistant to alteration after burial and has been used in paleoceanographic studies to reconstruct seawater chemistry and productivity through time. For such applications it is very important to determine the origin of the barite used, because both diagenetic and hydrothermal barite deposits may not accurately record the open-ocean contemporaneous seawater chemistry and productivity. We show here that it is possible to distinguish between the different types of barite by using Sr and S isotopes along with crystal morphology and size characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microbially mediated anaerobic oxidation of methane (AOM) is the major biological sink of the greenhouse gas methane in marine sediments (doi:10.1007/978-94-009-0213-8_44) and serves as an important control for emission of methane into the hydrosphere. The AOM metabolic process is assumed to be a reversal of methanogenesis coupled to the reduction of sulfate to sulfide involving methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB) as syntrophic partners which were describes amongst others in Boetius et al. (2000; doi:10.1038/35036572). In this study, 16S rRNA-based methods were used to investigate the distribution and biomass of archaea in samples from sediments above outcropping methane hydrate at Hydrate Ridge (Cascadia margin off Oregon) and (ii) massive microbial mats enclosing carbonate reefs (Crimea area, Black Sea). Sediment samples from Hydrate Ridge were obtained during R/V SONNE cruises SO143-2 in August 1999 and SO148-1 in August 2000 at the crest of southern Hydrate Ridge at the Cascadia convergent margin off the coast of Oregon. The second study area is located in the Black Sea and represents a field in which there is active seepage of free gas on the slope of the northwestern Crimea area. Here, a field of conspicuous microbial reefs forming chimney-like structures was discovered at a water depth of 230 m in anoxic waters. The microbial mats were sampled by using the manned submersible JAGO during the R/V Prof. LOGACHEV cruise in July 2001. At Hydrate Ridge the surface sediments were dominated by aggregates consisting of ANME-2 and members of the Desulfosarcina-Desulfococcus branch (DSS) (ANME-2/DSS aggregates), which accounted for >90% of the total cell biomass. The numbers of ANME-1 cells increased strongly with depth; these cells accounted 1% of all single cells at the surface and more than 30% of all single cells (5% of the total cells) in 7- to 10-cm sediment horizons that were directly above layers of gas hydrate. In the Black Sea microbial mats ANME-1 accounted for about 50% of all cells. ANME-2/DSS aggregates occurred in microenvironments within the mat but accounted for only 1% of the total cells. FISH probes for the ANME-2a and ANME-2c subclusters were designed based on a comparative 16S rRNA analysis. In Hydrate Ridge sediments ANME-2a/DSS and ANME-2c/DSS aggregates differed significantly in morphology and abundance. The relative abundance values for these subgroups were remarkably different at Beggiatoa sites (80% ANME-2a, 20% ANME-2c) and Calyptogena sites (20% ANME-2a, 80% ANME-2c), indicating that there was preferential selection of the groups in the two habitats.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Atlantic is regarded as a huge carbonate depocenter due to an on average deep calcite lysocline. However, calculations and models that attribute the calcite lysocline to the critical undersaturation depth (hydrographic or chemical lysocline) and not to the depth at which significant calcium carbonate dissolution is observed (sedimentary calcite lysocline) strongly overestimate the preservation potential of calcareous deep-sea sediments. Significant calcium carbonate dissolution is expected to begin firstly below 5000 m in the deep Guinea and Angola Basin and below 4400 m in the Cape Basin. Our study that is based on different calcium carbonate dissolution stages of the planktic foraminifera Globigerina bulloides clearly shows that it starts between 400 and 1600 m shallower depending on the different hydrographic settings of the South Atlantic Ocean. In particular, coastal areas are severely affected by increased supply of organic matter and the resultant production of metabolic CO2 which seems to create microenvironments favorable for dissolution of calcite well above the hydrographic lysocline.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we test various parameters in deep-sea sediments (bulk sediment parameters and changes in microfossil abundances and preservation character) which are generally accepted as indicators of calcium carbonate dissolution. We investigate sediment material from station GeoB 1710-3 in the northern Cape Basin (eastern South Atlantic), 280 km away from the Namibian coast, well outside today's coastal upwelling. As northern Benguela upwelling cells were displaced westward and periodically preceded the core location during the past 245 kyr (Volbers et al., submitted), GeoB 1710-3 sediments reflect these changes in upwelling productivity. Results of the most commonly used calcium carbonate dissolution proxies do not only monitor dissolution within these calcareous sediments but also reflect changes in upwelling intensity. Accordingly, these conventional proxy parameters misrepresent, to some extent, the extent of calcium carbonate dissolution. These results were verified by an independent dissolution proxy, the Globigerina bulloides dissolution index (BDX') (Volbers and Henrich, 2002, doi:10.1016/S0025-3227(02)00333-X). The BDX' is based on scanning electronic microscope ultrastructural investigation of planktonic foraminiferal tests and indicates persistent good carbonate preservation throughout the past 245 kyr, with the exception of one pronounced dissolution event at early oxygen isotopic stage (OIS) 6. The early OIS 6 is characterized by calcium carbonate contents, sand contents, and planktonic foraminiferal concentrations all at their lowest levels for the last 245 kyr. At the same time, the ratio of radiolarian to planktonic foraminiferal abundances and the ratio of benthic to planktonic foraminiferal tests are strongly increased, as are the rain ratio, the fragmentation index, and the BDX'. The sedimentary calcite lysocline rose above the core position and GeoB 1710-3 sediments were heavily altered, as attested to by the unusual accumulation of pellets, aggregates, sponge spicules, radiolaria, benthic foraminifera, and planktonic foraminiferal assemblages. Solely the early OIS 6 dissolution event altered the coarse fraction intensely, and is therefore reflected by all conventional calcium carbonate preservation proxies and the BDX'. We attribute the more than 1000 m rise of the sedimentary calcite lysocline to the combination of two processes: (a) a prominent change in the deep-water mass distribution within the South Atlantic and (b) intense degradation of organic material within the sediment (preserved as maximum total organic carbon content) creating microenvironments favorable for calcium carbonate dissolution.