12 resultados para baseline
em Publishing Network for Geoscientific
Resumo:
During CO2 storage operations in mature oilfields or saline aquifers it is desirable to trace the movement of injected CO2 for verification and safety purposes. We demonstrate the successful use of carbon isotope abundance ratios for tracing the movement of CO2 injected at the Cardium CO2 Storage Monitoring project in Alberta between 2005 and 2007. Injected CO2 had a d13C value of -4.6±1.1 per mil that was more than 10 per mil higher than the carbon isotope ratios of casing gas CO2 prior to CO2 injection with average d13C values ranging from -15.9 to -23.5 per mil. After commencement of CO2 injection, d13C values of casing gas CO2 increased in all observation wells towards those of the injected CO2 consistent with a two-source end-member mixing model. At four wells located in a NE-SW trend with respect to the injection wells, breakthrough of injected CO2 was registered chemically (>50 mol % CO2) and isotopically 1-6 months after commencement of CO2 injection resulting in cumulative CO2 fluxes exceeding 100000 m**3 during the observation period. At four other wells, casing gas CO2 contents remained below 5 mol % resulting in low cumulative CO2 fluxes (<2000 m**3) throughout the entire observation period, but carbon isotope ratios indicated contributions between <30 and 80% of injected CO2. Therefore, we conclude that monitoring the movement of CO2 in the injection reservoir with geochemical and isotopic techniques is an effective approach to determine plume expansion and to identify potential preferential flow paths provided that the isotopic composition of injected CO2 is constant and distinct from that of baseline CO2.
Resumo:
Downwelling and upwelling shortwave and longwave radiation components from six active polar sites, taking part of the Baseline Surface Radiation Network (BSRN), were selected for the period of the last International Polar Year (March 2007 to March 2009), and included in the BSRN-IPY dataset, along with metadata and supplementary data for some of the stations. Two sites, located at Svalbard archipelago (Ny Ålesund) and Alaska (Barrow), represent Arctic sea-level conditions. Four Antarctic stations represent both sea-level (Dronning Maud Land and Cosmonaut Sea) and high-elevation conditions (South Pole and East Antarctic Plateau). The BSRN-IPY dataset content and quality are discussed.
Resumo:
The Weyburn Oil Field, Saskatchewan is the site of a large (5000 tonnes/day of CO2) CO2-EOR injection project By EnCana Corporation. Pre- and post-injection samples (Baseline and Monitor-1, respectively) of produced fluids from approximately 45 vertical wells were taken and chemically analyzed to determine changes in the fluid chemistry and isotope composition between August 2000 and March 2001. After 6 months of CO2 injection, geochemical parameters including pH, [HCO3], [Ca], [Mg], and ?13CO2(g) point to areas in which injected CO2 dissolution and reservoir carbonate mineral dissolution have occurred. Pre-injection fluid compositions suggest that the reservoir brine in the injection area may be capable of storing as much as 100 million tonnes of dissolved CO2. Modeling of water-rock reactions show that clay minerals and feldspar, although volumetrically insignificant, may be capable of acting as pH buffers, allowing injected CO2 to be stored as bicarbonate in the formation water or as newly precipitated carbonate minerals, given favorable reaction kinetics.
Resumo:
Macroalgae, in particular kelps, produce a large amount of biomass in Kongsfjorden, which is to a great extent released into the water in an annual cycle. As an example, the brown alga Alaria esculenta loses its blade gradually, 3 ± 0.8 % of the blade area per day (August 2012), thereby adding to the pool of particulate organic matter (POM) in the fjord. Upon release small thallus pieces are "aging" in that they are prone to leaching and serving as substrate for microorganisms, thus turning into palatable food for suspension and bottom feeders. In order to define a macroalgal baseline for the Kongsfjorden food web, stable isotopes d14C and d15N were measured in individuals of A. esculenta, Saccharina latissima and Laminaria digitata directly sampled after collection and in artificially produced POM (aPOM) of A. esculenta that was allowed to age under experimental conditions. In aPOM from this species sampled in August 2012 the C/N ratios decreased between d1 and d8 of a 14-day culture period in parallel to the fading photosynthetic activity of the algal fragments as demonstrated by use of an Imaging-PAM. Microscopic observations of the aPOM in August 2012 and 2013 revealed the frequent occurrence of small brown algal endo- and epiphytes. First feeding experiments with Mysis oculata (Mysids) and Hiatella arctica (Bivalves) showed that these species can ingest macroalgal POM. The importance of kelp-derived POM for the food web is subject of the current research.
Resumo:
At Ny-Ålesund (78.9° N), Svalbard, surface radiation measurements of up- and downward short- and longwave radiation are operated since August 1992 in the frame of the Baseline Surface Radiation Network (BSRN), complemented with surface and upper air meteorology since August 1993. The long-term observations are the base for a climatological presentation of the surface radiation data. Over the 21-year observation period, ongoing changes in the Arctic climate system are reflected. Particularly, the observations indicate a strong seasonality of surface warming and related changes in different radiation parameters. The annual mean temperature at Ny-Ålesund has risen by +1.3 ± 0.7 K per decade, with a maximum seasonal increase during the winter months of +3.1 ± 2.6 K per decade. At the same time, winter is also the season with the largest long-term changes in radiation, featuring an increase of +15.6 ± 11.6 W/m**2 per decade in the downward longwave radiation. Furthermore, changes in the reflected solar radiation during the months of snow melt indicate an earlier onset of the warm season by about 1 week compared to the beginning of the observations. The online available dataset of Ny-Ålesund surface radiation measurements provides a valuable data source for the validation of satellite instruments and climate models.
Resumo:
In the framework of the global energy balance, the radiative energy exchanges between Sun, Earth and space are now accurately quantified from new satellite missions. Much less is known about the magnitude of the energy flows within the climate system and at the Earth surface, which cannot be directly measured by satellites. In addition to satellite observations, here we make extensive use of the growing number of surface observations to constrain the global energy balance not only from space, but also from the surface. We combine these observations with the latest modeling efforts performed for the 5th IPCC assessment report to infer best estimates for the global mean surface radiative components. Our analyses favor global mean downward surface solar and thermal radiation values near 185 and 342 Wm**-2, respectively, which are most compatible with surface observations. Combined with an estimated surface absorbed solar radiation and thermal emission of 161 Wm**-2 and 397 Wm**-2, respectively, this leaves 106 Wm**-2 of surface net radiation available for distribution amongst the non-radiative surface energy balance components. The climate models overestimate the downward solar and underestimate the downward thermal radiation, thereby simulating nevertheless an adequate global mean surface net radiation by error compensation. This also suggests that, globally, the simulated surface sensible and latent heat fluxes, around 20 and 85 Wm**-2 on average, state realistic values. The findings of this study are compiled into a new global energy balance diagram, which may be able to reconcile currently disputed inconsistencies between energy and water cycle estimates.
Resumo:
Samoylov Island is centrally located within the Lena River Delta at 72° N, 126° E and lies within the Siberian zone of continuous permafrost. The landscape on Samoylov Island consists mainly of late Holocene river terraces with polygonal tundra, ponds and lakes, and an active floodplain. The island has been the focus of numerous multidisciplinary studies since 1993, which have focused on climate, land cover, ecology, hydrology, permafrost and limnology. This paper aims to provide a framework for future studies by describing the characteristics of the island's meteorological parameters (temperature, radiation and snow cover), soil temperature, and soil moisture. The land surface characteristics have been described using high resolution aerial images in combination with data from ground-based observations. Of note is that deeper permafrost temperatures have increased between 0.3 to 1.3 °C over the last five years. However, no clear warming of air and active layer temperatures is detected since 1998, though winter air temperatures during recent years have not been as cold as in earlier years.