130 resultados para average of all velocity values for a given period

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Precise measurements of ice-flow velocities are necessary for a proper understanding of the dynamics of glaciers and their response to climate change. We use stand-alone single-frequency GPS receivers for this purpose. They are designed to operate unattended for 1-3 years, allowing uninterrupted measurements for long periods with hourly temporal resolution. We present the system and illustrate its functioning using data from 9 GPS receivers deployed on Nordenskiöldbreen, Svalbard, for the period 2006-2009. The accuracy of the receivers is 1.62 m based on the standard deviation in the average location of a stationary reference station (NBRef). Both the location of NBRef and the observed flow velocities agree within one standard deviation with DGPS measurements. Periodicity (6, 8, 12, 24 h) in the NBRef data is largely explained by the atmospheric, mainly ionospheric, influence on the GPS signal. A (weighed) running-average on the observed locations significantly reduces the standard deviation and removes high frequency periodicities, but also reduces the temporal resolution. Results show annual average velocities varying between 40 and 55 m/yr at stations on the central flow-line. On weekly to monthly time-scales we observe a peak in the flow velocities (from 60 to 90 m/yr) at the beginning of July related to increased melt-rates. No significant lag is observed between the timing of the maximum speed between different stations. This is likely due to the limited temporal resolution after averaging in combination with the relatively small distance (max. ±13 km) between the stations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. Data sets in this collection provide methodological and environmental context to all samples collected during the Tara Oceans Expedition (2009-2013).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the Pb isotope data for the Leg 92 metalliferous sediments (carbonate-free fraction) form approximately linear arrays in the conventional isotopic plots, extending from the middle of the field for mid-ocean ridge basalts (MORB) toward the field for Mn nodules. These arrays are directed closely to the average values of Mn nodules, the composition of which reflects the Pb isotope composition of seawater (Reynolds and Dasch, 1971). Since the Leg 92 samples are almost devoid of continentally derived detritus, it can be inferred that the more radiogenic end-member is seawater. The less radiogenic end-member lies in the very middle of the MORB field, and hence can be considered to reflect the Pb isotope composition of typical ocean-ridge basalt. The array of data lying between these two end-members is most readily interpreted in terms of simple linear mixing of Pb from the two different end-member sources. According to this model, eight samples from Sites 599 to 601 contain 50 to 100% basaltic Pb. Five of these samples have compositions that are identical within the uncertainty of the analyses. We use the average of these five values to define our unradiogenic end-member in the linear mixing model. The ratios used for this average are 206Pb/204Pb = 18.425 ± 0.010; 207Pb/204Pb = 15.495 ± 0.018; 208Pb/204Pb = 37.879 ± 0.068. These values should approximate the average Pb isotope composition of discharging hydrothermal solutions, and therefore also that of the basaltic crust, over the period of time represented by these samples ( 4 m.y., from 4 to 8 Ma). Sr isotope ratios show a significant range of values, from 0.7082 to 0.7091. The lower ratios are well outside the value of 0.70910 ± 6 for modern-day seawater (Burke et al., 1982). However, most values correspond very closely to the curve of 87Sr/86Sr versus age for seawater, with older samples having progressively lower 87Sr/86Sr ratios. The simplest explanation for this progressive reduction is that recrystallization of the abundant biogenic carbonate in the sediments released older seawater Sr which was incorporated into ferromanganiferous phases during diagenesis. Leg 92 metalliferous sediments have total rare earth element (REE) contents that range on a carbonate-free basis from 131 to 301 ppm, with a clustering between 167 and 222 ppm. The patterns have strong negative Ce anomalies. Samples from Sites 599 to 601 display a slight but distinct enrichment in the heavy REE relative to the light REE, whereas those from Sites 597 to 598 show almost no heavy REE enrichment. The former patterns (those for Sites 599 to 601) are interpreted as indicating moderate diagenetic alteration of metalliferous sediments originating at the EPR axis; the latter reflect more complete diagenetic modification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides environmental context to all samples from the Tara Oceans Expedition (2009-2013), including calculated averages of mesaurements made concurrently at the sampling location and depth, and calculated averages from climatologies (AMODIS, VGPM) and satellite products.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set provides environmental context to all samples from the Tara Oceans Expedition (2009-2013), about mesoscale features related to the sampling date, time and location. Includes calculated averages of mesaurements made concurrently at the sampling location and depth, and calculated averages from climatologies (AMODIS, VGPM) and satellite products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment samples collected during the expedition "Arctic Ocean '96" with the Swedish ice-breaker ODEN were investigated to estimate for the first time heterotrophic activity and total microbial biomass (size range from bacteria to small metazoans) from the perennially ice-covered central Arctic Ocean. Benthic activities and biomass were evaluated analysing a series of biogenic sediment compounds (i.e. bacterial exoenzymes, total adenylates, DNA, phospholipids, particulate proteins). In contrast to the very time-consuming sorting, enumeration and weight determination, analyses of biochemical sediment parameters may represent a useful method for obtaining rapid information on the ecological situation in a given benthic system. Bacterial cell numbers and biomass were estimated for comparison with biochemically determined biomass data, to evaluate the contribution of the bacterial biomass to the total microbial biomass. It appeared that bacterial biomass made up only 8-31% (average of all stations = 20%) of the total microbial biomass, suggesting a large fraction of other small infaunal organisms within the sediment samples (most probably fungi, yeasts, protozoans such as flagellates, ciliates or amoebae, as well as a fraction of small metazoans). Activity and biomass values determined within this study were generally extremely low, and often even slightly lower than those given for other deep oceanic regions, thus characterizing the seafloor of the central Arctic Ocean as a "benthic desert". Nevertheless, some clear trends in the data could be found, e.g. generally sharply decreasing values within the sediment column, a vague tendency for declining values with increasing water depth of sampling stations, and also differences between various Arctic deep-sea regions.