13 resultados para automated proof

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A composite section, which reconstructs a continuous stratigraphic record from cores of multiple nearby holes, and its associated composite depth scale are important tools for analyzing sediment recovered from a drilling site. However, the standard technique for creating composite depth scales on drilling cruises does not correct for depth distortion within each core. Additionally, the splicing technique used to create composite sections often results in a 10-15% offset between composite depths and measured drill depths. We present a new automated compositing technique that better aligns stratigraphy across holes, corrects depth offsets, and could be performed aboard ship. By analyzing 618 cores from seven Ocean Drilling Program (ODP) sites, we estimate that ?80% of the depth offset in traditional composite depth scales results from core extension during drilling and extraction. Average rates of extension are 12.4 ± 1.5% for calcareous and siliceous cores from ODP Leg 138 and 8.1 ± 1.1% for calcareous and clay-rich cores from ODP Leg 154. Also, average extension decreases as a function of depth in the sediment column, suggesting that elastic rebound is not the dominant extension mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present tools for rapid and quantitative detection of sediment lamination. The BMPix tool extracts color and gray-scale curves from images at pixel resolution. The PEAK tool uses the gray-scale curve and performs, for the first time, fully automated counting of laminae based on three methods. The maximum count algorithm counts every bright peak of a couplet of two laminae (annual resolution) in a smoothed curve. The zero-crossing algorithm counts every positive and negative halfway-passage of the curve through a wide moving average, separating the record into bright and dark intervals (seasonal resolution). The same is true for the frequency truncation method, which uses Fourier transformation to decompose the curve into its frequency components before counting positive and negative passages. We applied the new methods successfully to tree rings, to well-dated and already manually counted marine varves from Saanich Inlet, and to marine laminae from the Antarctic continental margin. In combination with AMS14C dating, we found convincing evidence that laminations in Weddell Sea sites represent varves, deposited continuously over several millennia during the last glacial maximum. The new tools offer several advantages over previous methods. The counting procedures are based on a moving average generated from gray-scale curves instead of manual counting. Hence, results are highly objective and rely on reproducible mathematical criteria. Also, the PEAK tool measures the thickness of each year or season. Since all information required is displayed graphically, interactive optimization of the counting algorithms can be achieved quickly and conveniently.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spatial and temporal dynamics of seagrasses have been studied from the leaf to patch (100 m**2) scales. However, landscape scale (> 100 km**2) seagrass population dynamics are unresolved in seagrass ecology. Previous remote sensing approaches have lacked the temporal or spatial resolution, or ecologically appropriate mapping, to fully address this issue. This paper presents a robust, semi-automated object-based image analysis approach for mapping dominant seagrass species, percentage cover and above ground biomass using a time series of field data and coincident high spatial resolution satellite imagery. The study area was a 142 km**2 shallow, clear water seagrass habitat (the Eastern Banks, Moreton Bay, Australia). Nine data sets acquired between 2004 and 2013 were used to create seagrass species and percentage cover maps through the integration of seagrass photo transect field data, and atmospherically and geometrically corrected high spatial resolution satellite image data (WorldView-2, IKONOS and Quickbird-2) using an object based image analysis approach. Biomass maps were derived using empirical models trained with in-situ above ground biomass data per seagrass species. Maps and summary plots identified inter- and intra-annual variation of seagrass species composition, percentage cover level and above ground biomass. The methods provide a rigorous approach for field and image data collection and pre-processing, a semi-automated approach to extract seagrass species and cover maps and assess accuracy, and the subsequent empirical modelling of seagrass biomass. The resultant maps provide a fundamental data set for understanding landscape scale seagrass dynamics in a shallow water environment. Our findings provide proof of concept for the use of time-series analysis of remotely sensed seagrass products for use in seagrass ecology and management.