2 resultados para aromatization
em Publishing Network for Geoscientific
Resumo:
Potassium permanganate oxidative degradations were conducted for kerogens isolated from Cretaceous black shales (DSDP Leg 41, Site 368), thermally altered during the Miocene by diabase intrusions and from unaltered samples heated under laboratory conditions (250-500°C). Degradation products of less altered kerogens are dominated by normal C4-C15 alpha,omega-dicarboxylic acids, with lesser amounts of n-C16 and n-C18 monocarboxylic acids, and benzene mono-to-tetracarboxylic acids. On the other hand, thermally altered kerogens show benzene di-to-tetracarboxylic acids as dominant degradation products, with lesser or no amounts (variable depending on the degree of thermal alteration) of alpha,omega-dicarboxylic acids. Essentially no differences between the oxidative degradation products of naturally- and artificially-altered kerogens are observed. As a result of this study, five indices of aromatization (total aromatic acids/kerogen; apparent aromaticity; benzenetetracarboxylic acids/total aromatic acids; benzene-1,2-dicarboxylic acid/benzenedicarboxylic acids; benzene-1,2,3-tricarboxylic acid/benzenetricarboxylic acids) and two indices of aliphatic character (Total aliphatic acids/kerogen; Aliphaticity) are proposed to characterize the degree of thermal alteration of kerogens. Furthermore, a good correlation is observed between apparent aromaticity estimated by the present KMnO4 oxidation method and that from the 13C NMR method (Dennis et al., 1982; doi:10.1016/0016-7037(82)90046-1).
Resumo:
A relatively well documented record of intermediate and late chlorophyll diagenesis in marine sediments now exists. Intermediate diagenetic stages include conversion of chlorins to DPEP-series porphyrins and subsequent chelation with nickel, vanadyl, and, in special cases, copper. Increasing thermal stress leads to etio-series generation and transalkylation (Baker, 1969; Baker and Smith, 1975; Baker et al., 1977; Palmer and Baker, in press). In contrast, the early transformations of clorophyll are still largely unknown. Very early diagenetic reactions must certainly include loss of magnesium, deesterification, decarboxylation, reduction of ring-conjugating groups, and finally, oxidative-aromatization of carbons 7 and 8 in ring IV to yield free-base porphyrins (Baker and Smith, 1973; Smith and Baker, 1974). Chlorins (7,8-dihydroporphyrins) are very difficult to isolate and identify, because of hydrocarbon impurities which absorb in the blue to violet region of the electromagnetic spectrum and which co-chromatograph with the pigments. Further complications possibly can arise from artifact formation during isolation. In the present study, twelve DSDP Leg 56 core samples, ranging in sub-bottom depth from 4 to 420 meters and in age from Pleistocene to middle Miocene, were analyzed for tetrapyrrole pigments. Chlorins, in concentrations ranging from about 4 to less than 0.002 µg/g sediment, wet weight, were the only tetrapyrroles found. A carotenoid (tetraterpene) was isolated from Section 434-1-3.