5 resultados para arguments in favor
em Publishing Network for Geoscientific
Resumo:
The detection of multi-decadal trends in the oceanic oxygen content and its possible attribution to global warming is protracted by the presence of a substantial amount of interannual to decadal variability, which hitherto is poorly known and characterized. Here we address this gap by studying interannual to decadal changes of the oxygen concentration in the Subpolar Mode Water (SPMW), the Intermediate Water (IW) and the Mediterranean Outflow Water (MOW) in the eastern North Atlantic. We use data from a hydrographic section located in the eastern North Atlantic at about 48°N repeated 12 times over a period of 19 years from 1993 through 2011, with a nearly annual resolution up to 2005. Despite a substantial amount of year-to-year variability, we observe a long-term decrease in the oxygen concentration of all three water masses, with the largest changes occurring from 1993 to 2002. During that time period, the trends were mainly caused by a contraction of the subpolar gyre associated with a northwestward shift of the Subpolar Front (SPF) in the eastern North Atlantic. This caused SPMW to be ventilated at lighter densities and its original density range being invaded by subtropical waters with substantially lower oxygen concentrations. The contraction of the subpolar gyre reduced also the penetration of IW of subpolar origin into the region in favor of an increased northward transport of IW of subtropical origin, which is also lower in oxygen. The long-term oxygen changes in the MOW were mainly affected by the interplay between circulation and solubility changes. Besides the long-term signals, mesoscale variability leaves a substantial imprint as well, affecting the water column over at least the upper 1000 m and laterally by more than 400 km. Mesoscale eddies induced changes in the oxygen concentration of a magnitude that can substantially alias analyses of long-term changes based on repeat hydrographic data that are being collected at intervals of typically 10 years.
Resumo:
The timing and magnitude of sea-surface temperature (SST) changes in the tropical southern South China Sea (SCS) during the last 16,500 years have been reconstructed on a high-resolution, 14C-dated sediment core using three different foraminiferal transfer functions (SIMMAX28, RAM, FP-12E) and geochemical (Uk'37) SST estimates. In agreement with CLIMAP reconstructions, both the FP-12E and the Uk'37 SST estimates show an average late glacial-interglacial SST difference of 2.0°C, whereas the RAM and SIMMAX28 foraminiferal transfer functions show only a minor (0.6°C) or no consistent late glacial-interglacial SST change, respectively. Both the Uk'37 and the FP-12E SST estimates, as well as the planktonic foraminiferal delta18O values, indicate an abrupt warming (ca. 1°C in <200 yr) at the end of the last glaciation, synchronous (within dating uncertainties) with the Bølling transition as recorded in the Greenland Ice Sheet Project 2 (GISP2) ice core, whereas the RAM-derived deglacial SST increase appears to lag during this event by ca. 500 yr. The similarity in abruptness and timing of the warming associated with the Bølling transition in Greenland and the southern SCS suggest a true synchrony of the Northern Hemisphere warming at the end of the last glaciation. In contrast to the foraminiferal transfer function estimates that do not indicate any consistent cooling associated with the Younger Dryas (YD) climate event in the tropical SCS, the Uk'37 SST estimates show a cooling of ca. 0.2-0.6°C compared to the Bølling-Allerød period. These Uk'37 SST estimates from the southern SCS argue in favor of a Northern Hemisphere-wide, synchronous cooling during the YD period.
Resumo:
There are controversies regarding the origin of Heinrich layer 3 (H3), the massive ice-rafting and meltwater event in the North Atlantic during the last glacial cycle spanning a time window between 29 and 30 kyr B.P. Some argue in favor of a Laurentide Ice Sheet source similar to other Heinrich layers, while a contending view argues for the European ice sheet source. Existing geochemical proxies such as 40Ar/39Ar, 206Pb/204Pb, or epsilon-Nd, etc., could not be used to distinguish among various sources of ice-rafted debris in H3 because of their low abundances, suggesting a background glacial sediment signal. In order to circumvent this problem a biomarker-based approach is used to characterize the provenance of H layers 2, 3, and 4 and other non-Heinrich layers. The presence of hopanes and steranes and their aromatic counterparts in the H layers is incompatible with Recent sediments and is attributed to the transportation of organic matter because of the glacial erosion of source rocks. The most diagnostic and useful signatures of this ancient organic matter in the H layers are the dominance of C34 hopanoids over C33 and the occurrence of isorenieratane along with palaerenieratane. Biomarkers signatures in H layers 2 and 3 of the Labrador Sea suggest no difference in their source. Hydrocarbon distributions suggest that these sediments were derived from the Middle to Late Ordovician and Silurian source rocks of the Hudson Bay of eastern Canada. Biomarker data of the H layer 4 from the northwest Atlantic reveal that the sediments of this layer have a similar source to the H layers in the Labrador Sea.
Resumo:
Coral reefs persist in an accretion-erosion balance and ocean acidification resulting from anthropogenic CO2 emissions threatens to shift this balance in favor of net reef erosion. Corals and calcifying algae, largely responsible for reef accretion, are vulnerable to environmental changes associated with ocean acidification, but the direct effects of lower pH on reef erosion has received less attention, particularly in the context of known drivers of bioerosion and natural variability. This study examines the balance between reef accretion and erosion along a well-characterized natural environmental gradient in Kane'ohe Bay, Hawai'i using experimental blocks of coral skeleton. Comparing before and after micro-computed tomography (µCT) scans to quantify net accretion and erosion, we show that, at the small spatial scale of this study (tens of meters), pH was a better predictor of the accretion-erosion balance than environmental drivers suggested by prior studies, including resource availability, temperature, distance from shore, or depth. In addition, this study highlights the fine-scale variation of pH in coastal systems and the importance of microhabitat variation for reef accretion and erosion processes. We demonstrate significant changes in both the mean and variance of pH on the order of meters, providing a local perspective on global increases in pCO2. Our findings suggest that increases in reef erosion, combined with expected decreases in calcification, will accelerate the shift of coral reefs to an erosion-dominated system in a high-CO2 world. This shift will make reefs increasingly susceptible to storm damage and sea-level rise, threatening the maintenance of the ecosystem services that coral reefs provide.
Resumo:
At DSDP Sites 534 (Central Atlantic) and 535 and 540 (Gulf of Mexico), and in the Vocontian Basin (France), Lower Cretaceous deposits show a very pronounced alternation of limestone and marl. This rhythm characterizes the pelagic background sedimentation and is independent of detritic intercalations related to contour and turbidity currents. Bed-scale cycles, estimated to be 6000-26,000 yr. long, comprise major and minor units. Their biological and mineralogic components, burrowing, heavy isotopes C and O, and some geochemical indicators, vary in close correlation with CaCO3 content. Vertical changes of frequency and asymmetry of the cycles are connected with fluctuations of the sedimentation rate. Plots of cycle thickness ("cyclograms") permit detailed correlations of the three areas and improve the stratigraphic subdivision of Neocomian deposits at the DSDP sites. Small-scale alternations, only observed in DSDP cores, comprise centimetric to millimetric banding and millimetric to micrometric lamination, here interpreted as varvelike alternations between laminae that are rich in calcareous plankton and others rich in clay. The laminations are estimated to correspond to cycles approximately 1,3, and 13 yr. in duration. The cyclic patterns appear to be governed by an interplay of continental and oceanic processes. Oceanic controls express themselves in variations of the biogenic carbonate flux, which depends on variations of such elements as temperature, oxygenation, salinity, and nutrient content. Continental controls modulate the influxes of terrigenous material, organic matter, and nutrients derived from cyclic erosion on land. Among the possible causes of cyclic sedimentation, episodic carbonate dissolution has been ruled out in favor of climatic fluctuations with a large range of periods. Such fluctuations are consistent with the great geographic extension shown by alternation controls and with the continuous spectrum of scales that characterizes limestone-marl cycles. The climatic variations induced by the Earth's orbital parameters (Milankovitch cycles) could be connected to bed-interbed alternations.