11 resultados para architectural design -- data processing

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A reliable assessment of relevant substance flows is very important for environmental risk assessments and efficiency analysis of measures to reduce or avoid emissions of micropollutants like drugs to water systems. Accordingly, a detailed preparation of monitoring campaigns should include an accuracy check for the sampling configuration to prove the reliability of the monitoring results and the subsequent data processing. The accuracy of substance flow analyses is expected to be particularly weak for substances having high short-term variations of concentrations in sewage. This is especially the case linked to the observation of substance flows close to source in waste water systems. The verification of a monitoring configuration in a hospital sewer in Luxembourg is in the centre of interest of the case study presented here. A tracer test in the sewer system under observation is an essential element of the suggested accuracy check and provides valuable information for an uncertainty analysis. The results illustrate the importance of accuracy checks as an essential element of the preparation of monitoring campaigns. Moreover the study shows that continuous flow proportional sampling enables a representative observation of short-term peak loads of the iodinated x-ray contrast media iobitridol close to source.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, profiling floats, which form the basis of the successful international Argo observatory, are also being considered as platforms for marine biogeochemical research. This study showcases the utility of floats as a novel tool for combined gas measurements of CO2 partial pressure (pCO2) and O2. These float prototypes were equipped with a small-sized and submersible pCO2 sensor and an optode O2 sensor for highresolution measurements in the surface ocean layer. Four consecutive deployments were carried out during November 2010 and June 2011 near the Cape Verde Ocean Observatory (CVOO) in the eastern tropical North Atlantic. The profiling float performed upcasts every 31 h while measuring pCO2, O2, salinity, temperature, and hydrostatic pressure in the upper 200 m of the water column. To maintain accuracy, regular pCO2 sensor zeroings at depth and surface, as well as optode measurements in air, were performed for each profile. Through the application of data processing procedures (e.g., time-lag correction), accuracies of floatborne pCO2 measurements were greatly improved (10-15 µatm for the water column and 5 µatm for surface measurements). O2 measurements yielded an accuracy of 2 µmol/kg. First results of this pilot study show the possibility of using profiling floats as a platform for detailed and unattended observations of the marine carbon and oxygen cycle dynamics.