2 resultados para apertures
em Publishing Network for Geoscientific
Resumo:
In the late Pliocene-middle Pleistocene a group of 95 species of elongate, cylindrical, deep-sea (lower bathyal-abyssal) benthic foraminifera became extinct. This Extinction Group (Ext. Gp), belonging to three families (all the Stilostomellidae and Pleurostomellidae, some of the Nodosariidae), was a major component (20-70%) of deep-sea foraminiferal assemblages in the middle Cenozoic and subsequently declined in abundance and species richness before finally disappearing almost completely during the mid-Pleistocene Climatic Transition (MPT). So what caused these declines and extinction? In this study 127 Ext. Gp species are identified from eight Cenozoic bathyal and abyssal sequences in the North Atlantic and equatorial Pacific Oceans. Most species are long-ranging with 80% originating in the Eocene or earlier. The greatest abundance and diversity of the Ext. Gp was in the warm oceanic conditions of the middle Eocene-early Oligocene. The group was subjected to significant changes in the composition of the faunal dominants and slightly enhanced species turnover during and soon after the rapid Eocene-Oligocene cooling event. Declines in the relative abundance and flux of the Ext. Gp, together with enhanced species loss, occurred during middle-late Miocene cooling, particularly at abyssal sites. The overall number of Ext. Gp species present began declining earlier at mid abyssal depths (in middle Miocene) than at upper abyssal (in late Pliocene-early Pleistocene) and then lower bathyal depths (in MPT). By far the most significant Ext. Gp declines in abundance and species loss occurred during the more severe glacial stages of the late Pliocene-middle Pleistocene. Clearly, the decline and extinction of this group of deep-sea foraminifera was related to the function of their specialized apertures and the stepwise cooling of global climate and deep water. We infer that the apertural modifications may be related to the method of food collection or processing, and that the extinctions may have resulted from the decline or loss of their specific phytoplankton or prokaryote food source, that was more directly impacted than the foraminifera by the cooling temperatures.
Resumo:
Morphological evolution in the late Neogene planktonic foraminifer Sphaeroidinella lineage involves a sudden increase of the percentage of specimens equipped with supplementary apertures (from <30% to >70%) in the mid-Pliocene (about 3.5 Ma). This evolutionary transition, marked by the first occurrence of specimens with large supplementary apertures in the lineage, is denoted the Sphaeroidinella event. Changes in the proportions of the supplementary apertures in the lineage were studied in 24 samples from ODP Hole 926A drilled in the equatorial Atlantic Ocean. In addition, detailed chronological models have been compiled for this section as well as for Pliocene sections from DSDP Holes 214, 502A, and 503B, where evolution in the lineage have been analyzed previously. Stratigraphic correlation of the studied sequences suggests that the Sphaeroidinella event took place at about 3.6 Ma in the eastern equatorial Pacific (Hole 503B) and at 3.5-3.6 Ma in the Caribbean (Hole 502A), while in the Atlantic Ocean (Hole 926A) and in the Indian Ocean (Hole 214) the event occurred after 3.5 Ma. The inferred diachrony of the mid-Pliocene Sphaeroidinella transition, which is considered to represent a prime example of punctuated anagenesis, suggests that this evolutionary modality may have an allopatric component. Its short duration (on average less than 50 kyr) and the detailed biochronology that could be established for this event qualifies it as a useful biostratigraphic tool in the low-latitude Pliocene oceans.