16 resultados para anticipated regret

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years there has been considerable discussion concerning the biostratigraphic correlations between planktonic zonations and the classical Neogene California benthic foraminiferal stages. One of the primary objectives of IPOD Leg 63 was to investigate these correlations and to determine the possibility of temporal variation of the benthic stages between California land sections and the outer Continental Borderland. In addition, it was anticipated that analyses of the benthic foraminiferal faunas at Site 468 would provide critical information on the paleoenvironmental history of the outer borderland. The provincial benthic Neogene foraminiferal stages were established by Kleinpell (1938) for the Miocene and Natland (1952) for the Pliocene-Pleistocene; both are well-documented in designated type sections. These stages have been used for interbasinal correlations, although time-transgressive problems have been suggested by several authors (Bandy, 1971; Ingle, 1967, 1973; Crouch and Bukry, 1979). An important biostratigraphic sequence occurs at Site 468, significant because of its relatively shallow depth of approximately 1700 meters. The samples yield well-preserved benthic foraminiferal faunas throughout most of the Neogene sequence and are accompanied by abundant well-preserved calcareous and siliceous planktonic assemblages. It is this co-occurrence of both planktonic and benthic faunas that enables the correlation of outer continental margin sediments with those of the classical land-based sections of southern California.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples from the upper portion of a cyclic pelagic carbonate sediment sequence in Deep-Sea Drilling Project (DSDP) hole 503B (4.0°N, 95.6°W) are the first group to be analyzed for paleoceanographic and paleoclimatic proxy-indicators of ice volume, deep ocean and surface water circulation, and atmospheric circulation in order to resolve the complex origin of the cyclicity. Temporal resolution is taken from the delta18O time scale, most other parameters are calculated in terms of their mass flux to the seafloor. CaCO3 percent in the sediments fluctuates in the well-known Pacific pattern and is higher during glacial times. The fluxes of opal and organic carbon have patterns similar to each other and show a variability of a factor of 2.5 to 4. The longer organic carbon record shows flux maxima during both glacial and interglacial times. The accumulation patterns of both opal and organic carbon suggest that the variability in surface water productivity and/or seafloor preservation of those materials is not simply correlated to glacial or interglacial periods. Eolian dust fluxes are greater during interglacial periods by factors of 2 to 5, indicating that eolian source regions in central and northern South America were more arid during interglacial periods. The record of eolian grain size provides a semiquantitative estimation of the intensity of the transporting winds. The eolian data suggest more intense atmospheric circulation during interglacial periods, opposite to the anticipated results. We interpret this observation as recording the southerly shift of the intertropical convergence zone to the latitude of hole 503B during glaciations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we present an improved astronomical timescale since 5 Ma as recorded in the ODP Site 1143 in the southern South China Sea, using a recently published Asian summer monsoon record (hematite to goethite content ratio, Hm/Gt) and a parallel benthic d18O record. Correlation of the benthic d18O record to the stack of 57 globally distributed benthic d18O records (LR04 stack) and the Hm/Gt curve to the 65°N summer insolation curve is a particularly useful approach to obtain refined timescales. Hence, it constitutes the basis for our effort. Our proposed modifications result in a more accurate and robust chronology than the existing astronomical timescale for the ODP Site 1143. This updated timescale further enables a detailed study of the orbital variability of low-latitude Asian summer monsoon throughout the Plio-Pleistocene. Comparison of the Hm/Gt record with the d18O record from the same core reveals that the oscillations of low-latitude Asian summer monsoon over orbital scales differed considerably from the glacial-interglacial climate cycles. The popular view that summer monsoon intensifies during interglacial stages and weakens during glacial stages appears to be too simplistic for low-latitude Asia. In low-latitude Asia, some strong summer monsoon intervals appear to have also occurred during glacial stages in addition to their increased occurrence during interglacial stages. Vice versa, some notably weak summer monsoon intervals have also occurred during interglacial stages next to their anticipated occurrence during glacial stages. The well-known mid-Pleistocene transition (MPT) is only identified in the benthic d18O record but not in the Hm/Gt record from the same core. This suggests that the MPT may be a feature of high- and middle-latitude climates, possibly determined by high-latitude ice sheet dynamics. For low-latitude monsoonal climate, its orbital-scale variations respond more directly to insolation and are little influenced by high-latitude processes, thus the MPT is likely not recorded. In addition, the Hm/Gt record suggests that low-latitude Asian summer monsoon intensity has a long-term decreasing trend since 2.8 Ma with increased oscillation amplitude. This long-term variability is presumably linked to the Northern Hemisphere glaciation since then.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leg 190 was the first of a two-leg program across the Nankai accretionary prism and Trough, offshore Japan, aiming to evaluate existing models for prism evolution and to constrain syntectonic sedimentation, deformation styles, mechanical properties, and prism hydrology (Moore, Taira, Klaus, et al., 2001; Moore et al., 2001). More than 400 volcanic ash and siliceous claystone (altered ash) layers were penetrated and sampled during drilling of the six sites from two transects across the accretionary prism (Sites 1173-1178). In sites from the subducting Shikoku Basin (Sites 1173 and 1177) and in the trench axis (Site 1174), recognition of ash layers and diagenetically altered ashes was initially important in defining major lithostratigraphic units. However, it is clear that understanding the diagenesis of the volcanic ashes has considerable implications for prism evolution, mechanical properties, prism hydrology, geochemistry, and fluid flow in the accretionary prism and associated subducting sediments (cf. Masuda et al., 1996, doi 10.1346/CCMN.1996.0440402). Particle size, chemical composition, temperature, depth of burial, and time are all thought to be factors that may affect volcanic ash diagenesis and preservation (Kuramoto et al., 1992, doi:10.2973/odp.proc.sr.127128-2.235.1992; Underwood et al., 1993, doi:10.2973/odp.proc.sr.131.137.1993). The overall aim of this research is to evaluate factors influencing volcanic ash diagenesis in the Nankai Trough area. This data report presents just the results of the sedimentological and petrographic analysis of the volcanic ashes and siliceous claystones from Sites 1173, 1174, and 1177. It is anticipated that when the results of additional geochemical analysis of these lithologies is available a more meaningful evaluation of factors influencing volcanic ash alteration will be possible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Canary Island primitive basaltic magmas are thought to be derived from an HIMU-type upwelling mantle containing isotopically depleted (NMORB)-type component having interacted with an enriched (EM)-type component, the origin of which is still a subject of debate. We studied the relationships between Ni, Mn and Ca concentrations in olivine phenocrysts (85.6-90.0 mol.% Fo, 1,722-3,915 ppm Ni, 1,085-1,552 ppm Mn, 1,222-3,002 ppm Ca) from the most primitive subaerial and ODP Leg 157 high-silica (picritic to olivine basaltic) lavas with their bulk rock Sr-Nd-Pb isotope compositions (87Sr/86Sr = 0.70315-0.70331, 143Nd/144Nd = 0.51288-0.51292, 206Pb/204Pb = 19.55-19.93, 207Pb/204Pb = 15.60-15.63, 208Pb/204Pb = 39.31-39.69). Our data point toward the presence of both a peridotitic and a pyroxenitic component in the magma source. Using the model (Sobolev et al., 2007, Science Vol 316) in which the reaction of Si-rich melts originated during partial melting of eclogite (a high pressure product of subducted oceanic crust) with ambient peridotitic mantle forms olivine-free reaction pyroxenite, we obtain an end member composition for peridotite with 87Sr/86Sr = 0.70337, 143Nd/144Nd = 0.51291, 206Pb/204Pb = 19.36, 207Pb/204Pb = 15.61 and 208Pb/204Pb = 39.07 (EM-type end member), and pyroxenite with 87Sr/86Sr = 0.70309, 143Nd/144Nd = 0.51289, 206Pb/204Pb = 20.03, 207Pb/204Pb = 15.62 and 208Pb/204Pb = 39.84 (HIMU-type end member). Mixing of melts from these end members in proportions ranging from 70% peridotite and 30% pyroxenite to 28% peridotite and 72% pyroxenite derived melt fractions can generate the compositions of the most primitive Gran Canaria shield stage lavas. Combining our results with those from the low-silica rocks from the western Canary Islands (Gurenko et al., 2009, doi:10.1016/j.epsl.2008.11.013), at least four distinct components are required. We propose that they are (1) HIMU-type pyroxenitic component (representing recycled ocean crust of intermediate age) from the plume center, (2) HIMU-type peridotitic component (ancient recycled ocean crust stirred into the ambient mantle) from the plume margin, (3) depleted, MORB-type pyroxenitic component (young recycled oceanic crust) in the upper mantle entrained by the plume, and (4) EM-type peridotitic component from the asthenosphere or lithosphere above the plume center.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A joint mesocosm experiment took place in February/March 2013 in the bay of Villefranche in France as part of the european MedSeA project. Nine mesocosms (52 m**3) were deployed over a 2 weeks period and 6 different levels of pCO2 and 3 control mesocosms (about 450 µatm), were used, in order to cover the range of pCO2 anticipated for the end of the present century. During this experiment, the potential effects of these perturbations on chemistry, planktonic community composition and dynamics including: eucaryotic and prokaryotic species composition, primary production, nutrient and carbon utilization, calcification, diazotrophic nitrogen fixation, organic matter exudation and composition, micro-layer composition and biogas production were studied by a group of about 25 scientists from 8 institutes and 6 countries. This is one of the first mesocosm experiments conducted in oligotrophic waters. A blog dedicated to this experiment can be viewed at: http://medseavillefranche2013.obs-vlfr.fr.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A joint mesocosm experiment took place in June/July 2012 in Corsica (bay of Calvi, Stareso station;http://www.stareso.com/) as part of the european MedSeA project. Nine mesocosms (52 m**3) were deployed over a 20 days period and 6 different levels of pCO2 and 3 control mesocosms (about 450 µatm), were used, in order to cover the range of pCO2 anticipated for the end of the present century. During this experiment, the potential effects of these perturbations on chemistry, planktonic community composition and dynamics including: eucaryotic and prokaryotic species composition, primary production, nutrient and carbon utilization, calcification, diazotrophic nitrogen fixation, organic matter exudation and composition, micro-layer composition and biogas production were studied by a group of about 25 scientists from 8 institutes and 6 countries. This is one of the first mesocosm experiments conducted in oligotrophic waters. A blog dedicated to this experiment can be viewed at: http://medseastareso2012.wordpress.com/.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Shrubs and trees are expected to expand in the sub-Arctic due to global warming. Our study was conducted in Abisko, sub-arctic Sweden. We recorded the change in coverage of shrub and tree species over a 32- to 34-year period, in three 50 x 50 m plots; in the alpine-tree-line ecotone. The cover of shrubs and trees (<3.5 cm diameter at breast height) were estimated during 2009-2010 and compared with historical documentation from 1976 to 1977. Similarly, all tree stems (>=3.5 cm) were noted and positions determined. There has been a substantial increase of cover of shrubs and trees, particularly dwarf birch (Betula nana), and mountain birch (Betula pubescens ssp. czerepanovii), and an establishment of aspen (Populus tremula). The other species willows (Salix spp.), juniper (Juniperus communis), and rowan (Sorbus aucuparia) revealed inconsistent changes among the plots. Although this study was unable to identify the causes for the change in shrubs and small trees, they are consistent with anticipated changes due to climate change and reduced herbivory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antarctic calcified macroorganisms are particularly vulnerable to ocean acidification because many are weakly calcified, the dissolution rates of calcium carbonate are inversely related to temperature, and high latitude seas are predicted to become undersaturated in aragonite by the year 2100. We examined the post-mortem dissolution rates of aragonitic and calcitic shells from four species of Antarctic benthic marine invertebrates (two bivalves, one limpet, one brachiopod) and the thallus of a limpet shell-encrusting coralline alga exposed to acidified pH (7.4) or non-acidified pH (8.2) seawater at a constant temperature of 4 C. Within a period of only 14-35 days, shells of all four species held in pH 7.4 seawater had suffered significant dissolution. Despite calcite being 35% less soluble in seawater than aragonite, there was surprisingly, no consistent pattern of calcitic shells having slower dissolution rates than aragonitic shells. Outer surfaces of shells held in pH 7.4 seawater exhibited deterioration by day 35, and by day 56 there was exposure of aragonitic or calcitic prisms within the shell architecture of three of the macroinvertebrate species. Dissolution of coralline algae was confirmed by differences in weight loss in limpet shells with and without coralline algae. By day 56, thalli of the coralline alga held in pH 7.4 displayed a loss of definition of the conceptacle pores and cracking was evident at the zone of interface with limpet shells. Experimental studies are needed to evaluate whether there are adequate compensatory mechanisms in these and other calcified Antarctic benthic macroorganisms to cope with anticipated ocean acidification. In their absence, these organisms, and the communities they comprise, are likely to be among the first to experience the cascading impacts of ocean acidification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sinking of gelatinous zooplankton biomass is an important component of the biological pump removing carbon from the upper ocean. The export efficiency, e.g., how much biomass reaches the ocean interior sequestering carbon, is poorly known because of the absence of reliable sinking speed data. We measured sinking rates of gelatinous particulate organic matter (jelly-POM) from different species of scyphozoans, ctenophores, thaliaceans, and pteropods, both in the field and in the laboratory in vertical columns filled with seawater using high-quality video. Using these data, we determined taxon-specific jelly-POM export efficiencies using equations that integrate biomass decay rate, seawater temperature, and sinking speed. Two depth scenarios in several environments were considered, with jelly-POM sinking from 200 and 600 m in temperate, tropical, and polar regions. Jelly-POM sank on average between 850 and 1500 m/d (salps: 800-1200 m/d; ctenophores: 1200-1500 m/d; scyphozoans: 1000-1100 m d; pyrosomes: 1300 m/d). High latitudes represent a fast-sinking and low-remineralization corridor, regardless of species. In tropical and temperate regions, significant decomposition takes place above 1500 m unless jelly-POM sinks below the permanent thermocline. Sinking jelly-POM sequesters carbon to the deep ocean faster than anticipated, and should be incorporated into biogeochemical and modeling studies to provide more realistic quantification of export via the biological carbon pump worldwide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification is anticipated to decrease calcification and increase dissolution of shelled molluscs. Molluscs with thinner and weaker shells may be more susceptible to predation, but not all studies have measured negative responses of molluscs to elevated pCO2. Recent studies measuring the response of molluscs have found greater variability at the population level than first expected. Here we investigate the impact of acidification on the predatory whelk Morula marginalba and genetically distinct subpopulations of the Pacific oyster Crassostrea gigas. Whelks and eight family lines of C. gigas were separately exposed to ambient (385 ppm) and elevated (1000 ppm) pCO2 for 6 weeks. Following this period, individuals of M. marginalba were transferred into tanks with oysters at ambient and elevated pCO2 for 17 days. The increase in shell height of the oysters was on average 63% less at elevated compared to ambient pCO2. There were differences in shell compression strength, thickness, and mass among family lines of C. gigas, with sometimes an interaction between pCO2 and family line. Against expectations, this study found increased shell strength in the prey and reduced shell strength in the predator at elevated compared to ambient pCO2. After 10 days, the whelks consumed significantly more oysters regardless of whether C. gigas had been exposed to ambient or elevated CO2, but this was not dependent on the family line and the effect was not significant after 17 days. Our study found an increase in predation after exposure of the predator to predicted near-future levels of estuarine pCO2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification (OA) is anticipated to interact with the more frequently occurring hypoxic conditions in shallow coastal environments. These could exert extreme stress on the barnacle-dominated fouling communities. However, the interactive effect of these two emerging stressors on early-life stages of fouling organisms remains poorly studied. We investigated both the independent and interactive effect of low pH (7.6 vs. ambient 8.2) and low oxygen (LO; 3 mg/l vs. ambient 5 mg/l) from larval development through settlement (attachment and metamorphosis) and juvenile growth of the widespread fouling barnacle, Balanus amphitrite. In particular, we focused on the critical transition between planktonic and benthic phases to examine potential limiting factors (i.e. larval energy storage and the ability to perceive cues) that may restrain barnacle recruitment under the interactive stressors. LO significantly slowed naupliar development, while the interaction with low pH (LO-LP) seemed to alleviate the negative effect. However, 20-50% of the larvae became cyprid within 4 d post-hatching, regardless of treatment. Under the two stressors interaction (LO-LP), the barnacle larvae increased their feeding rate, which may explain why their energy reserves at competency were not different from any other treatment. In the absence of a settlement-inducing cue, a significantly lower percentage of cyprids (15% lower) settled in LO and LO-LP. The presence of an inducing cue, however, elevated attachment up to 50-70% equally across all treatments. Post-metamorphic growth was not altered, although the condition index was different between LO and LO-LP treatments, potentially indicating that less and/or weaker calcified structures were developed when the two stressors were experienced simultaneously. LO was the major driver for the responses observed and its interaction with low pH should be considered in future studies to avoid underestimating the sensitivity of biofouling species to OA and associated climate change stressors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fractionation of the noble gases should occur during formation of a Structure I gas hydrate from water and CH4 such that CH4 hydrate is greatly enriched in Xenon. Noble gas concentrations and fractionation factors (F[4He], F[22Ne], F[86Kr], and F[132Xe] as well as R/Ra) were determined for eight gas hydrate specimens collected on Leg 164 to evaluate this theoretical possibility and to assess whether sufficient quantities of Xe are hosted in oceanic CH4 hydrate to account for Xe "missing" from the atmosphere. The simplest explanation for our results is that samples contain mixtures of air and two end-member gases. One of the end-member gases is depleted in Ne, but significantly enriched in Kr and Xe, as anticipated if the source of this gas involves fractionation during Structure I gas hydrate formation. However, although oceanic CH4 hydrate may be greatly enriched in Xe, simple mass balance calculations indicate that oceanic CH4 hydrate probably represents only a minor reservoir of terrestrial Xe. Noble gas analyses may play an important role in understanding the dynamics of gas hydrate reservoirs, but significantly more work is needed than presented here.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inorganic silicate fraction extracted from bulk pelagic sediments from the North Pacific Ocean is eolian dust. It monitors the composition of continental crust exposed to erosion in Asia. 176Lu/177Hf ratios of modern dust are subchondritic between 0.011 and 0.016 but slightly elevated with respect to immature sediments. Modern dust samples display a large range in Hf isotopic composition (IC), -4.70 < epsilon-Hf < +16.45, which encompasses that observed for the time series of DSDP cores 885/886 and piston core LL44-GPC3 extending back to the late Cretaceous. Hafnium and neodymium isotopic results are consistent with a dominantly binary mixture of dust contributed from island arc volcanic material and dust from central Asia. The Hf-Nd isotopic correlation for all modern dust samples, epsilon-Hf= =0.78 epsilon-Nd = +5.66 (n =22, R**2 =0.79), is flatter than those reported so far for terrestrial reservoirs. Moreover, the variability in epsilon-Hf of Asian dust exceeds that predicted on the basis of corresponding epsilon-Nd values (34.76 epsilon-Hf < +2.5; -10.96< epsilon-Nd <-10.1). This is attributed to: (1) the fixing of an important unradiogenic fraction of Hf in zircons, balanced by radiogenic Hf that is mobile in the erosional cycle, (2) the elevated Lu/Hf ratio in chemical sediments which, given time, results in a Hf signature that is radiogenic compared with Hf expected from its corresponding Nd isotopic components, and (3) the possibility that diagenetic resetting of marine sediments may incorporate a significant radiogenic Hf component into diagenetically grown minerals such as illite. Together, these processes may explain the variability and more radiogenic character of Hf isotopes when compared to the Nd isotopic signatures of Asian dust. The Hf-Nd isotope time series of eolian dust are consistent with the results of modern dust except two samples that have extremely radiogenic Hf for their Nd (epsilon-Hf =+8.6 and +10.3, epsilon-Nd =39.5 and 39.8). These data may point to a source contribution of dust unresolved by Nd and Pb isotopes. The Hf IC of eolian dust input to the oceans may be more variable and more radiogenic than previously anticipated. The Hf signature of Pacific seawater, however, has varied little over the past 20 Myr, especially across the drastic increase of eolian dust flux from Asia around 3.5 Ma. Therefore, continental contributions to seawater Hf appear to be riverine rather than eolian. Current predictions regarding the relative proportions of source components to seawater Hf must account for the presence of a variable and radiogenic continental component. Data on the IC and flux of river-dissolved Hf to the oceans are urgently required to better estimate contributions to seawater Hf. This then would permit the use of Hf isotopes as a monitor of past changes in erosion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Climate-driven change represents the cumulative effect of global through local-scale conditions, and understanding their manifestation at local scales can empower local management. Change in the dominance of habitats is often the product of local nutrient pollution that occurs at relatively local scales (i.e. catchment scale), a critical scale of management at which global impacts will manifest. We tested whether forecasted global-scale change [elevated carbon dioxide (CO2) and subsequent ocean acidification] and local stressors (elevated nutrients) can combine to accelerate the expansion of filamentous turfs at the expense of calcifying algae (kelp understorey). Our results not only support this model of future change, but also highlight the synergistic effects of future CO2 and nutrient concentrations on the abundance of turfs. These results suggest that global and local stressors need to be assessed in meaningful combinations so that the anticipated effects of climate change do not create the false impression that, however complex, climate change will produce smaller effects than reality. These findings empower local managers because they show that policies of reducing local stressors (e.g. nutrient pollution) can reduce the effects of global stressors not under their governance (e.g. ocean acidification). The connection between research and government policy provides an example whereby knowledge (and decision making) across local through global scales provides solutions to some of the most vexing challenges for attaining social goals of sustainability, biological conservation and economic development.