6 resultados para anthropogenic activities

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A diverse suite of geochemical tracers, including 87Sr/86Sr and 143Nd/144Nd isotope ratios, the rare earth elements (REEs), and select trace elements were used to determine sand-sized sediment provenance and transport pathways within the San Francisco Bay coastal system. This study complements a large interdisciplinary effort (Barnard et al., 2012) that seeks to better understand recent geomorphic change in a highly urbanized and dynamic estuarine-coastal setting. Sand-sized sediment provenance in this geologically complex system is important to estuarine resource managers and was assessed by examining the geographic distribution of this suite of geochemical tracers from the primary sources (fluvial and rock) throughout the bay, adjacent coast, and beaches. Due to their intrinsic geochemical nature, 143Nd/144Nd isotopic ratios provide the most resolved picture of where sediment in this system is likely sourced and how it moves through this estuarine system into the Pacific Ocean. For example, Nd isotopes confirm that the predominant source of sand-sized sediment to Suisun Bay, San Pablo Bay, and Central Bay is the Sierra Nevada Batholith via the Sacramento River, with lesser contributions from the Napa and San Joaquin Rivers. Isotopic ratios also reveal hot-spots of local sediment accumulation, such as the basalt and chert deposits around the Golden Gate Bridge and the high magnetite deposits of Ocean Beach. Sand-sized sediment that exits San Francisco Bay accumulates on the ebb-tidal delta and is in part conveyed southward by long-shore currents. Broadly, the geochemical tracers reveal a complex story of multiple sediment sources, dynamic intra-bay sediment mixing and reworking, and eventual dilution and transport by energetic marine processes. Combined geochemical results provide information on sediment movement into and through San Francisco Bay and further our understanding of how sustained anthropogenic activities which limit sediment inputs to the system (e.g., dike and dam construction) as well as those which directly remove sediments from within the Bay, such as aggregate mining and dredging, can have long-lasting effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Partial pressure of CO2 (pCO2) and iron availability in seawater show corresponding changes due to biological and anthropogenic activities. The simultaneous change in these factors precludes an understanding of their independent effects on the ecophysiology of phytoplankton. In addition, there is a lack of data regarding the interactive effects of these factors on phytoplankton cellular stoichiometry, which is a key driving factor for the biogeochemical cycling of oceanic nutrients. Here, we investigated the effects of pCO2 and iron availability on the elemental composition (C, N, P, and Si) of the diatom Pseudo-nitzschia pseudodelicatissima (Hasle) Hasle by dilute batch cultures under 4 pCO2 (~200, ~380, ~600, and ~800 µatm) and five dissolved inorganic iron (Fe'; ~5, ~10, ~20, ~50, and ~100 pmol /L) conditions. Our experimental procedure successfully overcame the problems associated with simultaneous changes in pCO2 and Fe' by independently manipulating carbonate chemistry and iron speciation, which allowed us to evaluate the individual effects of pCO2 and iron availability. We found that the C:N ratio decreased significantly only with an increase in Fe', whereas the C:P ratio increased significantly only with an increase in pCO2. Both Si:C and Si:N ratios decreased with increasing pCO2 and Fe'. Our results indicate that changes in pCO2 and iron availability could influence the biogeochemical cycling of nutrients in future oceans with high- CO2 levels, and, similarly, during the time course of phytoplankton blooms. Moreover, pCO2 and iron availability may also have affected oceanic nutrient biogeochemistry in the past, as these conditions have changed markedly over the Earth's history.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heavy metals pollution in marine environments has caused great damage to marine biological and ecological systems. Heavy metals accumulate in marine creatures, after which they are delivered to higher trophic levels of marine organisms through the marine food chain, which causes serious harm to marine biological systems and human health. Additionally, excess carbon dioxide in the atmosphere has caused ocean acidification. Indeed, about one third of the CO2 released into the atmosphere by anthropogenic activities since the beginning of the industrial revolution has been absorbed by the world's oceans, which play a key role in moderating climate change. Modeling has shown that, if current trends in CO2 emissions continue, the average pH of the ocean will reach 7.8 by the end of this century, corresponding to 0.5 units below the pre-industrial level, or a three-fold increase in H+ concentration. The ocean pH has not been at this level for several millions of years. Additionally, these changes are occurring at speeds 100 times greater than ever previously observed. As a result, several marine species, communities and ecosystems might not have time to acclimate or adapt to these fast changes in ocean chemistry. In addition, decreasing ocean pH has the potential to seriously affect the growth, development and reproduction reproductive processes of marine organisms, as well as threaten normal development of the marine ecosystem. Copepods are an important part of the meiofauna that play an important role in the marine ecosystem. Pollution of the marine environment can influence their growth and development, as well as the ecological processes they are involved in. Accordingly, there is important scientific value to investigation of the response of copepods to ocean acidification and heavy metals pollution. In the present study, we evaluated the effects of simulated future ocean acidification and the toxicological interaction between ocean acidity and heavy metals of Cu and Cd on T. japonicus. To accomplish this, harpacticoids were exposed to Cu and Cd concentration gradient seawater that had been equilibrated with CO2 and air to reach pH 8.0, 7.7, 7.3 and 6.5 for 96 h. Survival was not significantly suppressed under single sea water acidification, and the final survival rates were greater than 93% in both the experimental groups and the controls. The toxicity of Cu to T. japonicus was significantly affected by sea water acidification, with the 96h LC50 decreasing by nearly threefold from 1.98 to 0.64 mg/L with decreasing pH. The 96 h LC50 of Cd decreased with decreasing pH, but there was no significant difference in mortality among pH treatments. The results of the present study demonstrated that the predicted future ocean acidification has the potential to negatively affect survival of T. japonicus by exacerbating the toxicity of Cu. The calculated safe concentrations of Cu were 11.9 (pH 7.7) and 10.5 (pH 7.3) µg/L, which were below the class I value and very close to the class II level of the China National Quality Standard for Sea Water. Overall, these results indicate that the Chinese coastal sea will face a

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mineralogical compositions of 119 samples collected from throughout the San Francisco Bay coastal system, including bayfloor and seafloor, area beaches, cliff outcrops, and major drainages, were determined using X-ray diffraction (XRD). Comparison of the mineral concentrations and application of statistical cluster analysis of XRD spectra allowed for the determination of provenances and transport pathways. The use of XRD mineral identifications provides semi-quantitative compositions needed for comparisons of beach and offshore sands with potential cliff and river sources, but the innovative cluster analysis of XRD diffraction spectra provides a unique visualization of how groups of samples within the San Francisco Bay coastal system are related so that sand-sized sediment transport pathways can be inferred. The main vector for sediment transport as defined by the XRD analysis is from San Francisco Bay to the outer coast, where the sand then accumulates on the ebb tidal delta and also moves alongshore. This mineralogical link defines a critical pathway because large volumes of sediment have been removed from the Bay over the last century via channel dredging, aggregate mining, and borrow pit mining, with comparable volumes of erosion from the ebb tidal delta over the same period, in addition to high rates of shoreline retreat along the adjacent, open-coast beaches. Therefore, while previously only a temporal relationship was established, the transport pathway defined by mineralogical and geochemical tracers support the link between anthropogenic activities in the Bay and widespread erosion outside the Bay. The XRD results also establish the regional and local importance of sediment derived from cliff erosion, as well as both proximal and distal fluvial sources. This research is an important contribution to a broader provenance study aimed at identifying the driving forces for widespread geomorphic change in a heavily urbanized coastal-estuarine system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypoxia and ocean acidification are two consequences of anthropogenic activities. These global trends occur on top of natural variability. In environments such as estuarine areas, short-term acute pH and O2 fluctuations are occurring simultaneously. The present study tested the combined effects of short-term seawater acidification and hypoxia on the physiology and energy budget of the thick shell mussel Mytilus coruscus. Mussels were exposed for 72 h to six combined treatments with three pH levels (8.1, 7.7 and 7.3) and two dissolved oxygen (DO) levels (2 mg/L, 6 mg/L). Clearance rate (CR), food absorption efficiency (AE), respiration rate (RR), ammonium excretion rate (ER), O:N ratio and scope for growth (SFG) were significantly reduced, and faecal organic dry weight ratio (E) was significantly increased at low DO. Low pH did not lead to a reduced SFG. Interactive effects of pH and DO were observed for CR, E and RR. Principal component analysis (PCA) revealed positive relationships among most physiological indicators, especially between SFG and CR under normal DO conditions. These results demonstrate that Mytilus coruscus was sensitive to short-term (72 h) exposure to decreased O2 especially if combined with decreased pH levels. In conclusion, the short-term oxygen and pH variation significantly induced physiological changes of mussels with some interactive effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the main sources of anthropogenic radionuclides in the ocean is the global fallout resulting from the nuclear tests that had been conducted by the United States, the former Soviet Union, and other countries between 1945 and 1990 mainly in the Northern Hemisphere. The most extensive fallout was observed in the middle latitudes of the Northern Hemisphere in 1963 immediately after the nuclear tests of 1961-1962 conducted by the United States and the Soviet Union. In 2006-2009, under the auspices of an agreement between the Vernadsky Institute of Geochemistry and Analytical Chemistry of the Russian Academy of Sciences and the National Center of Antarctic and Marine Research of the Ministry of Earth Sciences of India, cooperative geological and geochemical investigations were organized in several regions of the Indian Ocean. During these expeditions, the spatial distribution of anthropogenic radionuclides was investigated in the water of the Indian Ocean. The main results of these investigations are reported in this paper.