2 resultados para animal test replacement

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Samples of recent to Miocene fish and marine mammal bones from the bottom of the Atlantic and Pacific Oceans and Miocene Maikop deposits (Transcaspian region) are studied by X-ray diffraction technique combined with chemical and energy-dispersive analyses. Changes of lattice parameters and chemical composition of bioapatite during fossilization and diagenesis suggest that development of skeletal apatite proceeds from dahllite-type hydroxyapatite to francolite-type carbonate-fluorapatite. It is assumed that jump-type transition from dahllite to francolite during initial fossilization reflects replacement of biogeochemical reactions in living organisms, which are subject to nonlinear laws of nonequilibrium thermodynamics, by physicochemical processes according to the linear equilibrium thermodynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geographical size distribution within entire Holocene foraminiferal assemblages is related to global environmental gradients such as temperature, primary productivity, and environmental variability. This study demonstrates that these correlations are also recognizable in late Quaternary assemblages from three locations in the South Atlantic on temporal and latitudinal scales. The size response to temporal paleoenvironmental changes during glacial-interglacial cycles mimics the geographic Holocene size variability. The amplitude of size variability is directly related to the amplitude of the climatic fluctuations as shown by the stable size-temperature relationship over time. The documented changes in the assemblage size are caused by species replacement and intraspecific size variability. The relative importance of these processes depends on the environmental setting. Species have been shown to reach their maximum size and abundance under certain optimum conditions and decrease in size if environmental conditions differ from these optima. We confirm that late Quaternary species sizes were largest at paleotemperatures identical to Holocene ones.