5 resultados para alternative food evaluation
em Publishing Network for Geoscientific
Resumo:
Studies of fecal pellet flux show that a large percentage of pellets produced in the upper ocean is degraded within the surface waters. It is therefore important to investigate these degradation mechanisms to understand the role of fecal pellets in the oceanic carbon cycle. Degradation of pellets is mainly thought to be caused by coprophagy (ingestion of fecal pellets) by copepods, and especially by the ubiquitous copepods Oithona spp. We examined fecal pellet ingestion rate and feeding behavior of O. similis and 2 other dominant copepod species from the North Sea (Calanus helgolandicus and Pseudocalanus elongatus). All investigations were done with fecal pellets as the sole food source and with fecal pellets offered together with an alternative suitable food source. The ingestion of fecal pellets by all 3 copepod species was highest when offered together with an alternative food source. No feeding behavior was determined for O. similis due to the lack of pellet capture in those experiments. Fecal pellets offered together with an alternative food source increased the filtration activity by C. helgolandicus and P. elongatus and thereby the number of pellets caught in their feeding current. However, most pellets were rejected immediately after capture and were often fragmented during rejection. Actual ingestion of captured pellets was rare (<37% for C. helgolandicus and <24% for P. elongatus), and only small pellet fragments were ingested unintentionally along with alternative food. We therefore suggest coprorhexy (fragmentation of pellets) to be the main effect of copepods on the vertical flux of fecal pellets. Coprorhexy turns the pellets into smaller, slower-sinking particles that can then be degraded by other organisms such as bacteria and protozooplankton.
Resumo:
The ingestion of microplastics has been shown for a great variety of marine organisms. However, benthic marine mesoherbivores such as the common periwinkle Littorina littorea have been largely disregarded in studies about the effects of microplastics on the marine biota, probably because the pathway for microplastics to this functional group of organisms was not obvious. In laboratory experiments we showed that the seaweed Fucus vesiculosus retains suspended microplastics on its surface. The numbers of microplastics that adhered to the algae correlated with the concentrations of suspended particles in the water. In choice feeding assays L. littorea did not distinguish between algae with adherent microplastics and clean algae without microplastics, indicating that the snails do not recognize solid nonfood particles in the submillimeter size range as deleterious. In periwinkles that were feeding on contaminated algae, microplastics were found in the stomach and in the gut. However, no microplastics were found in the midgut gland, which is the principle digestive organ of gastropods. Microplastics in the fecal pellets of the periwinkles indicate that the particles do not accumulate rapidly inside the animals but are mostly released with the feces. Our results provide the first evidence that seaweeds may represent an efficient pathway for microplastics from the water to marine benthic herbivores.