48 resultados para advanced oxidation processes
em Publishing Network for Geoscientific
Resumo:
Electron microprobe and thermomagnetic analyses of selected basalt samples from Hole 597C were performed. The main purpose of this work was to investigate and estimate the degree of oxidation of the samples using the ratios of Fe to Ti and the Curie temperatures obtained from thermomagnetic curves. The results show that the magnetic properties of samples from Hole 597C change at a sub-bottom depth of 100 m, and that low-temperature and high-temperature oxidation processes prevailed above and below 100 m, respectively.
Resumo:
Mineralization of organic matter and the subsequent dissolution of calcite were simulated for surface sediments of the upper continental slope off Gabon by using microsensors to measure O2, pH, pCO2 and Ca2+ (in situ), pore-water concentration profiles of NO3-, NH4+, Fe2+, and Mn2+ and SO42- (ex situ), as well as sulfate reduction rates derived from incubation experiments. The transport and reaction model CoTReM was used to simulate the degradation of organic matter by O2, [NO3]-, Fe(OH)3 and [SO4]2-, reoxidation reactions involving Fe2+ and Mn2+, and precipitation of FeS. Model application revealed an overall rate of organic matter mineralization amounting to 50 µmol C cm**-2 yr**-1, of which 77% were due to O2, 17% to [NO3]- and 3% to Fe(OH)3 and 3% to [SO4]2-. The best fit for the pH profile was achieved by adapting three different dissolution rate constants of calcite ranging between 0.01 and 0.5% d-1 and accounting for different calcite phases in the sediment. A reaction order of 4.5 was assumed in the kinetic rate law. A CaCO3 flux to the sediment was estimated to occur at a rate of 42 g m**-2 yr**-1 in the area of equatorial upwelling. The model predicts a redissolution flux of calcite amounting to 36 g m**-2 yr**-1, thus indicating that ~90% of the calcite flux to the sediment is redissolved.
Resumo:
The outer western Crimean shelf of the Black Sea is a natural laboratory to investigate effects of stable oxic versus varying hypoxic conditions on seafloor biogeochemical processes and benthic community structure. Bottom-water oxygen concentrations ranged from normoxic (175 µmol O2/L) and hypoxic (< 63 µmol O2/L) or even anoxic/sulfidic conditions within a few kilometers' distance. Variations in oxygen concentrations between 160 and 10 µmol/L even occurred within hours close to the chemocline at 134 m water depth. Total oxygen uptake, including diffusive as well as fauna-mediated oxygen consumption, decreased from 15 mmol/m**2/d on average in the oxic zone, to 7 mmol/m**2/d on average in the hypoxic zone, correlating with changes in macrobenthos composition. Benthic diffusive oxygen uptake rates, comprising respiration of microorganisms and small meiofauna, were similar in oxic and hypoxic zones (on average 4.5 mmol/m**2/d), but declined to 1.3 mmol/m**2/d in bottom waters with oxygen concentrations below 20 µmol/L. Measurements and modeling of porewater profiles indicated that reoxidation of reduced compounds played only a minor role in diffusive oxygen uptake under the different oxygen conditions, leaving the major fraction to aerobic degradation of organic carbon. Remineralization efficiency decreased from nearly 100 % in the oxic zone, to 50 % in the oxic-hypoxic zone, to 10 % in the hypoxic-anoxic zone. Overall, the faunal remineralization rate was more important, but also more influenced by fluctuating oxygen concentrations, than microbial and geochemical oxidation processes.
Resumo:
Rates of organic matter (OM) transformation within the production-destruction cycle of the White Sea were estimated on the basis of measured activity values of redox enzymes of the electron transport system and of hydrolytic enzymes (phosphatase and protease). It was found that OM oxidation processes were the most intensive in the Kandalaksha Bay, while minimum oxidation rates were characteristic of central parts of the Dvina and Onega bays. It was revealed that the highest rates of phosphate mineralization were characteristic of the central part of the sea and near-mouth areas of the Onega and Kandalaksha bays, with the lowest rates in the Dvina Bay. During the period of intense primary production when resources of inorganic phosphorus were practically depleted, high rates of phosphate regeneration were observed. It was shown that populations of micro- and zooplankton in the White Sea were characterized by low activation energies of the principal metabolism reactions (3-6 kcal/mol), which allowed these populations to provide exchange intensity comparable to that of inhabitants of warm waters during all the seasons.
Resumo:
Biogeochemical cycle of methane in the Barents Sea was studied using isotope geochemistry to determine rates of microbial methane oxidation. It was established that microbiological processes (glucose consumption, 14CO2 assimilation, sulfate reduction, and slow methane oxidation) in oxidized surface and weakly reduced sediments are marked by only insignificant change in SO4 concentration and absence of notable increase of total alkalinity and N/NH4 downward sediment cores. Microbial methane productivity was 0.111x10**6 mol/day. Taking into account volume of the water column, microbial methane consumption therein can be as much as 1.8x10**6 mol/day.
Resumo:
The concentrations of rare earth elements (REEs), sulphate, hydrogen sulphide, total alkalinity, calcium, magnesium and phosphate were measured in shallow (<12 cm below seafloor) pore waters from cold-seep sediments on the northern and southern summits of Hydrate Ridge, offshore Oregon. Downward-decreasing sulphate and coevally increasing sulphide concentrations reveal sulphate reductionas dominant early diagenetic process from ~2 cm depth downwards. A strong increase of total dissolved REE concentrations is evident immediately below the sediment-water interface, which can be related to early diagenetic release of REEs into pore water resulting from the remineralization of particulate organic matter. The highest pore water REE concentrations were measured close to the sediment-water interface at ~2 cm depth. Distinct shale normalized REE patterns point to particulate organic matter and iron oxides as main REE sources in the upper ~2-cm depth interval. In general, the pore waters have shalenormalized patterns reflecting heavy REE (HREE) enrichment, which suggests preferential complexation of HREEs with carbonate ions. Below ~2 cm depth, a downward decrease in REE correlates with a decrease in pore water calcium concentrations. At this depth, the anaerobic oxidation of methane (AOM) coupled to sulphate reduction increases carbonate alkalinity through the production of bicarbonate, which results in the precipitation of carbonate minerals. It seems therefore likely that the REEs and calcium are consumed during vast AOM-induced precipitation of carbonate in shallow Hydrate Ridge sediments. The analysis of pore waters from Hydrate Ridge shed new light on early diagenetic processes at cold seeps, corroborating the great potential of REEs to identify geochemical processes and to constrain environmental conditions.