3 resultados para adaptive operator selection
em Publishing Network for Geoscientific
Resumo:
Coccolithophores are unicellular marine algae that produce biogenic calcite scales and substantially contribute to marine primary production and carbon export to the deep ocean. Ongoing ocean acidification particularly impairs calcifying organisms, mostly resulting in decreased growth and calcification. Recent studies revealed that the immediate physiological response in the coccolithophore Emiliania huxleyi to ocean acidification may be partially compensated by evolutionary adaptation, yet the underlying molecular mechanisms are currently unknown. Here, we report on the expression levels of 10 candidate genes putatively relevant to pH regulation, carbon transport, calcification and photosynthesis in E. huxleyi populations short-term exposed to ocean acidification conditions after acclimation (physiological response) and after 500 generations of high CO2 adaptation (adaptive response). The physiological response revealed downregulation of candidate genes, well reflecting the concomitant decrease of growth and calcification. In the adaptive response, putative pH regulation and carbon transport genes were up-regulated, matching partial restoration of growth and calcification in high CO2-adapted populations. Adaptation to ocean acidification in E. huxleyi likely involved improved cellular pH regulation, presumably indirectly affecting calcification. Adaptive evolution may thus have the potential to partially restore cellular pH regulatory capacity and thereby mitigate adverse effects of ocean acidification.
Resumo:
Recent evolution experiments have revealed that marine phytoplankton may adapt to global change, for example to ocean warming or acidification. Long-term adaptation to novel environments is a dynamic process and phenotypic change can take place thousands of generations after exposure to novel conditions. Using the longest evolution experiment performed in any marine species to date (4 yrs, = 2100 generations), we show that in the coccolithophore Emiliania huxleyi, long-term adaptation to ocean acidification is complex and initial phenotypic responses may revert for important traits. While fitness increased continuously, calcification was restored within the first 500 generations but later reduced in response to selection, enhancing physiological declines of calcification in response to ocean acidification. Interestingly, calcification was not constitutively reduced but revealed rates similar to control treatments when transferred back to present-day CO2 conditions. Growth rate increased with time in controls and adaptation treatments, although the effect size of adaptation assessed through reciprocal assay experiments varied. Several trait changes were associated with selection for higher cell division rates under laboratory conditions, such as reduced cell size and lower particulate organic carbon content per cell. Our results show that phytoplankton may evolve phenotypic plasticity that can affect biogeochemically important traits, such as calcification, in an unforeseen way under future ocean conditions.
Resumo:
Ocean acidification, the drop in seawater pH associated with the ongoing enrichment of marine waters with carbon dioxide from fossil fuel burning, may seriously impair marine calcifying organisms. Our present understanding of the sensitivity of marine life to ocean acidification is based primarily on short-term experiments, in which organisms are exposed to increased concentrations of CO2. However, phytoplankton species with short generation times, in particular, may be able to respond to environmental alterations through adaptive evolution. Here, we examine the ability of the world's single most important calcifying organism, the coccolithophore Emiliania huxleyi, to evolve in response to ocean acidification in two 500-generation selection experiments. Specifically, we exposed E. huxleyi populations founded by single or multiple clones to increased concentrations of CO2. Around 500 asexual generations later we assessed their fitness. Compared with populations kept at ambient CO2 partial pressure, those selected at increased partial pressure exhibited higher growth rates, in both the single- and multiclone experiment, when tested under ocean acidification conditions. Calcification was partly restored: rates were lower under increased CO2 conditions in all cultures, but were up to 50% higher in adapted compared with non-adapted cultures. We suggest that contemporary evolution could help to maintain the functionality of microbial processes at the base of marine food webs in the face of global change.