12 resultados para actinobacteria
em Publishing Network for Geoscientific
Resumo:
Background: Studies of oyster microbiomes have revealed that a limited number of microbes, including pathogens, can dominate microbial communities in host tissues such as gills and gut. Much of the bacterial diversity however remains underexplored and unexplained, although environmental conditions and host genetics have been implicated. We used 454 next generation 16S rRNA amplicon sequencing of individually tagged PCR reactions to explore the diversity of bacterial communities in gill tissue of the invasive Pacific oyster Crassostrea gigas stemming from genetically differentiated beds under ambient outdoor conditions and after a multifaceted disturbance treatment imposing stress on the host. Results: While the gill associated microbial communities in oysters were dominated by few abundant taxa (i.e. Sphingomonas, Mycoplasma) the distribution of rare bacterial groups correlated to relatedness between the hosts under ambient conditions. Exposing the host to disturbance broke apart this relationship by removing rare phylotypes thereby reducing overall microbial diversity. Shifts in the microbiome composition in response to stress did not result in a net increase in genera known to contain potentially pathogenic strains. Conclusion: The decrease in microbial diversity and the disassociation between population genetic structure of the hosts and their associated microbiome suggest that disturbance (i.e. stress) may play a significant role for the assembly of the natural microbiome. Such community shifts may in turn also feed back on the course of disease and the occurrence of mass mortality events in oyster populations.
Resumo:
Microorganisms play an important role in the transformation of material within the earth's crust. The storage of CO2 could affect the composition of inorganic and organic components in the reservoir, consequently influencing microbial activities. To study the microbial induced processes together with geochemical, petrophysical and mineralogical changes, occurring during CO2 storage, long-term laboratory experiments under simulated reservoir P-T conditions were carried out. Clean inner core sections, obtained from the reservoir region at the CO2 storage site in Ketzin (Germany) from a depth of about 650 m, were incubated in high pressure vessels together with sterile synthetic formation brine under in situ P-T conditions of 5.5 MPa and 40°C. A 16S rDNA based fingerprinting method was used to identify the dominant species in DNA extracts of pristine sandstone samples. Members of the alpha- and beta-subdivisions of Proteobacteria and the Actinobacteria were identified. So far sequences belonging to facultative anaerobic, chemoheterotrophic bacteria (Burkholderia fungorum, Agrobacterium tumefaciens) gaining their energy from the oxidation of organic molecules and a genus also capable of chemolithoautotrophic growth (Hydrogenophaga) was identified. During CO2 incubation minor changes in the microbial community composition were observed. The majority of microbes were able to adapt to the changed conditions. During CO2 exposure increased concentrations of Ca**2+, K**+, Mg**2+ and SO4**2- were observed. Partially, concentration rises are (i) due to equilibration between rock pore water and synthetic brine, and (ii) between rock and brine, and are thus independent on CO2 exposure. However, observed concentrations of Ca**2+, K**+, Mg**2+ are even higher than in the original reservoir fluid and therefore indicate mineral dissolution due to CO2 exposure.
Resumo:
The microbial population in samples of basalt drilled from the north of the Australian Antarctic Discordance (AAD) during Ocean Drilling Program Leg 187 were studied using deoxyribonucleic acid (DNA)-based methods and culturing techniques. The results showed the presence of a microbial population characteristic for the basalt environment. DNA sequence analysis revealed that microbes grouping within the Actinobacteria, green nonsulfur bacteria, the Cytophaga/Flavobacterium/Bacteroides (CFB) group, the Bacillus/Clostridium group, and the beta and gamma subclasses of the Proteobacteria were present in the basalt samples collected. The most dominant phylogenetic group, both in terms of the number of sequences retrieved and the intensities of the DNA bands obtained with the denaturing gradient gel electrophoresis analysis, was the gamma Proteobacteria. Enrichment cultures showed phylogenetic affiliation with the Actinobacteria, the CFB group, the Bacillus/Clostridium group, and the alpha, beta, gamma, and epsilon subclasses of the Proteobacteria. Comparison of native and enriched samples showed that few of the microbes found in native basalt samples grew in the enrichment cultures. Only seven clusters, two clusters within each of the CFB and Bacillus/Clostridium groups and five clusters within the gamma Proteobacteria, contained sequences from both native and enriched basalt samples with significant similarity. Results from cultivation experiments showed the presence of the physiological groups of iron reducers and methane producers. The presence of the iron/manganese-reducing bacterium Shewanella was confirmed with DNA analysis. The results indicate that iron reducers and lithotrophic methanogenic Archaea are indigenous to the ocean crust basalt and that the methanogenic Archaea may be important primary producers in this basaltic environment.
Resumo:
We describe the antibiotic resistance profiling of bacterial isolates collected from Ny-Alesund, Arctic, as part of the Indian Arctic Summer Expedition 2009. It was interesting to note that the bacterial isolates collected from the Arctic showed multidrug resistance. 32% of the isolates were found to be multi- drug resistant with several combinations of antibiotics. The 16S rRNA sequencing results shows a diverse group of bacteria belonging to Phyla Proteobacteria, Actinobacteria and Bacteriodetes and their relatedness was studied by phylogenetic analysis. While analysing the plasmid profiling, the most resistant two strains of Pseudomonas migulae showed multiple plasmids of varying sizes ~5.2-5.3 kb and ~9.5 kb. The extent and frequency of multidrug resistance in the polar bacteria deserves close monitoring and efforts to understand the various molecular mechanisms of drug resistance and control the spread of antibiotic resistance in polar environment is called for.
Resumo:
Antarctic glacier forefields are extreme environments and pioneer sites for ecological succession. Increasing temperatures due to global warming lead to enhanced deglaciation processes in cold-affected habitats, and new terrain is becoming exposed to soil formation and microbial colonization. However, only little is known about the impact of environmental changes on microbial communities and how they develop in connection to shifting habitat characteristics. In this study, using a combination of molecular and geochemical analysis, we determine the structure and development of bacterial communities depending on soil parameters in two different glacier forefields on Larsemann Hills, East Antarctica. Our results demonstrate that deglaciation-dependent habitat formation, resulting in a gradient in soil moisture, pH and conductivity, leads to an orderly bacterial succession for some groups, for example Cyanobacteria, Bacteroidetes and Deltaproteobacteria in a transect representing 'classical' glacier forefields. A variable bacterial distribution and different composed communities were revealed according to soil heterogeneity in a slightly 'matured' glacier forefield transect, where Gemmatimonadetes, Flavobacteria, Gamma- and Deltaproteobacteria occur depending on water availability and soil depth. Actinobacteria are dominant in both sites with dominance connected to certain trace elements in the glacier forefields.
Resumo:
A process of global importance in carbon cycling is the remineralization of algae biomass by heterotrophic bacteria, most notably during massive marine algae blooms. Such blooms can trigger secondary blooms of planktonic bacteria that consist of swift successions of distinct bacterial clades, most prominently members of the Flavobacteriia, Gammaproteobacteria and the alphaproteobacterial Roseobacter clade. This study explores such successions during spring phytoplankton blooms in the southern North Sea (German Bight) for four consecutive years. The surface water samples were taken at Helgoland Island about 40 km offshore in the southeastern North Sea in the German Bight at the station 'Kabeltonne' (54° 11.3' N, 7° 54.0' E) between the main island and the minor island, Düne (German for 'dune') using small research vessels (http://www.awi.de/en/expedition/ships/more-ships.html). Water depths at this site fluctuate from 6 to 10 m over the tidal cycle. Samples were processed as described previously (Teeling et al., 2012; doi:10.7554/eLife.11888.001) in the laboratory of the Biological Station Helgoland within less than two hours after sampling. Assessment of absolute cell numbers and bacterioplankton community composition was carried out as described previously (Thiele et al., 2011; doi:10.1016/B978-0-444-53199-5.00056-7). To obtain total cell numbers, DNA of formaldehyde fixed cells filtered on 0.2 mm pore sized filters was stained with 4',6-diamidino-2-phenylindole (DAPI). Fluorescently labeled cells were subsequently counted on filter sections using an epifluores-cence microscope. Likewise, bacterioplankton community composition was assessed by catalyzedreporter deposition fluorescence in situ hybridization (CARD-FISH) of formaldehyde fixed cells on 0.2 mm pore sized filters.
Resumo:
While microbial communities of aerosols have been examined, little is known about their sources. Nutrient composition and microbial communities of potential dust sources, saline lake sediments (SLS) and adjacent biological soil crusts (BSC), from Southern Australia were determined and compared with a previously analyzed dust sample. Multivariate analyses of fingerprinting profiles indicated that the bacterial communities of SLS and BSC were different, and these differences were mainly explained by salinity. Nutrient concentrations varied among the sites but could not explain the differences in microbial diversity patterns. Comparison of microbial communities with dust samples showed that deflation selects against filamentous cyanobacteria, such as the Nostocales group. This could be attributed to the firm attachment of cyanobacterial filaments to soil particles and/or because deflation occurs mainly in disturbed BSC, where cyanobacterial diversity is often low. Other bacterial groups, such as Actinobacteria and the spore-forming Firmicutes, were found in both dust and its sources. While Firmicutes-related sequences were mostly detected in the SLS bacterial communities (10% of total sequences), the actinobacterial sequences were retrieved from both (11-13%). In conclusion, the potential dust sources examined here show highly diverse bacterial communities and contain nutrients that can be transported with aerosols. The obtained fingerprinting and sequencing data may enable back tracking of dust plumes and their microorganisms.
Resumo:
Lake Towuti is a tectonic basin, surrounded by ultramafic rocks. Lateritic soils form through weathering and deliver abundant iron (oxy)hydroxides but very little sulfate to the lake and its sediment. To characterize the sediment biogeochemistry, we collected cores at three sites with increasing water depth and decreasing bottom water oxygen concentrations. Microbial cell densities were highest at the shallow site - a feature we attribute to the availability of labile organic matter and the higher abundance of electron acceptors due to oxic bottom water conditions. At the two other sites, OM degradation and reduction processes below the oxycline led to partial electron acceptor depletion. Genetic information preserved in the sediment as extracellular DNA provides information on aerobic and anaerobic heterotrophs related to Actinobacteria, Nitrospirae, Chloroflexi and Thermoplasmatales. These taxa apparently played a significant role in the degradation of sinking organic matter. However, extracellular DNA concentrations rapidly decrease with core depth. Despite very low sulfate concentrations, sulfate-reducing bacteria were present and viable in sediments at all three sites, as confirmed by measurement of potential sulfate reduction rates. Microbial community fingerprinting supported the presence of taxa related to Deltaproteobacteria and Firmicutes with demonstrated capacity for iron and sulfate reduction. Concomitantly, sequences of Ruminococcaceae, Clostridiales and Methanomicrobiales indicated potential for fermentative hydrogen and methane production. Such first insights into ferruginous sediments show that microbial populations perform successive metabolisms related to sulfur, iron and methane. In theory, iron reduction could reoxidize reduced sulfur compounds and desorb OM from iron minerals to allow remineralization to methane. Overall, we found that biogeochemical processes in the sediments can be linked to redox differences in the bottom waters of the three sites, like oxidant concentrations and the supply of labile OM. At the scale of the lacustrine record, our geomicrobiological study should provide a means to link the extant subsurface biosphere to past environments.