10 resultados para actinium

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of short-lived 223Ra often involves a second measurement for supported activities, which represents 227Ac in the sample. Here we exploit this fact, presenting a set of 284 values on the oceanic distribution of 227Ac, which was collected when analyzing water samples for short-lived radium isotopes by the radium delayed coincidence counting system. The present work compiles 227Ac data from coastal regions all over the northern hemisphere, including values from ground water, from estuaries and lagoons, and from marine end-members. Deep-sea samples from a continental slope off Puerto Rico and from an active vent site near Hawaii complete the overview of 227Ac near its potential sources. The average 227Ac activities of nearshore marine end-members range from 0.4 dpm/m**3 at the Gulf of Mexico to 3.0 dpm m? 3 in the coastal waters of the Korean Strait. In analogy to 228Ra, we find the extension of adjacent shelf regions to play a substantial role for 227Ac activities, although less pronounced than for radium, due to its weaker shelf source. Based on previously published values, we calculate an open ocean 227Ac inventory of 1.35 * 1018 dpm 227Acex in the ocean, which corresponds to 37 moles, or 8.4 kg. This implies a flux of 127 dpm/m**2/y from the deep-sea floor. For the shelf regions, we obtain a global inventory of 227Ac of 4.5 * 10**15 dpm, which cannot be converted directly into a flux value, as the regional loss term of 227Ac to the open ocean would have to be included. Ac has so far been considered to behave similarly to Ra in the marine environment, with the exception of a strong Ac source in the deep-sea due to 231Paex. Here, we present evidence of geochemical differences between Ac, which is retained in a warm vent system, and Ra, which is readily released [Moore, W.S., Ussler, W. and Paull, C.K., 2008-this issue. Short-lived radium isotopes in the Hawaiian margin: Evidence for large fluid fluxes through the Puna Ridge. Marine Chemistry]. Another potential mechanism of producing deviations in 227Ac/228Ra and daughter isotope ratios from the expected production value of lithogenic material is observed at reducing environments, where enrichment in uranium may occur. The presented data here may serve as a reference for including 227Ac in circulation models, and the overview provides values for some end-members that contribute to the global Ac distribution.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A description is given of a gamma-ray spectrometer complex consisting of four interchangeable, low-background NaI(Tl) crystals that operate simultaneously. The system is used in determination of concentrations of natural radioactive elements and sedimentation rates of bottom sediments by the ionium method. Three detector sizes are used, depending on amount of material available: 80x80; 100x100, and 150x150. The system is operated clockwise and data are brought out on a punch tape; results are computer-processed. Examples are shown of the complex use in determining sedimentation rates of bottom sediments in the Southeast Pacific and concentrations of natural radioactive elements in DSDP Hole 381.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Actinium is one of the rarest naturally occurring elements on earth. We measured its longest-lived isotope 227Ac (half-life 21.77 yr) for the first time in the water column of the Southeast Pacific, the Central Arctic, the Antarctic Circumpolar Current (ACC) and the Weddell Gyre (WG). Besides the profile in the Southeast Pacific, which confirms earlier findings about the role of diapycnal mixing for 227Ac distribution, we found three other different types of vertical profiles. These profiles point to a prominent role of advection for 227Ac distribution, especially in the Southern Ocean. Depending on the type of profile found, 227Ac is proposed as a tracer for different oceanographic questions. In the Southern Ocean, up to 4.93±0.32 dpm/m**3 227Ac is found close to the sea floor, which is the highest concentration ever observed in the ocean. Close to the sea surface in the WG, 0.46±0.05 dpm/m**3 227Acex (227Ac in excess of its progenitor 231Pa) is detected. We use 227Acex there to determine the upwelling velocity in the Eastern WG to be about 55 m/yr. In the ACC, Upper and Lower Circumpolar Deep Water (UCDW and LCDW) are found to differ clearly in their 227Acex activity. High 227Acex activities are therefore a promising tracer for recent inputs of LCDW to the sea surface, which may help to understand the role of deep upwelling for iron inputs into Antarctic surface waters. The expected release of 227Ac is compared with 228Ra to make sure that the large near-surface excess in the water column of the Southern Ocean is not due to lateral inputs by isopycnal mixing. Data from the Central Arctic and from a transect across the ACC confirm that 228Ra and 227Acex differ strongly in their sources. The first measurements of 227Ac on suspended matter (less than 1.7% of total 227Ac close to the sea floor) indicate that the particle reactivity of 227Ac is negligible in the open ocean, in agreement with earlier findings [Y. Nozaki, Nature 310 (1984) 486-488]. Despite the extremely low concentrations of 227Ac, new measurement techniques [W.S. Moore, R. Arnold, J. Geophys. Res. 101 (1996) 1321-1329] point to a comfortable and comparably simple determination of 227Ac in the future. Finally, 227Acex may become a widely used deep-sea specific tracer.