284 resultados para Zenobia, Queen of Palmyra
em Publishing Network for Geoscientific
Resumo:
The relationship between decadal to centennial changes in ocean circulation and climate is difficult to discern using the sparse and discontinuous instrumental record of climate and, as such, represents a large uncertainty in coupled ocean-atmosphere general circulation models. We present new modern and fossil coral radiocarbon (D14C) records from Palmyra (6°N, 162°W) and Christmas (2°N, 157°W) islands to constrain central tropical Pacific ocean circulation changes during the last millennium. Seasonally to annually resolved coral D14C measurements from the 10th, 12th-17th, and 20th centuries do not contain significant interannual to decadal-scale variations, despite large changes in coral d18O on these timescales. A centennial-scale increase in coral radiocarbon from the Medieval Climate Anomaly (~900-1200 AD) to the Little Ice Age (~1500-1800) can be largely explained by changes in the atmospheric D14C, as determined with a box model of Palmyra mixed layer D14C. However, large 12th century depletions in Palmyra coral D14C may reflect as much as a 100% increase in upwelling rates and/or a significant decrease in the D14C of higher-latitude source waters reaching the equatorial Pacific during this time. SEM photos reveal evidence for minor dissolution and addition of secondary aragonite in the fossil corals, but our results suggest that coral D14C is only compromised after moderate to severe diagenesis for these relatively young fossil corals.
Resumo:
The Antarctic Pack Ice Seal (APIS) Program was initiated in 1994 to estimate the abundance of four species of Antarctic phocids: the crabeater seal Lobodon carcinophaga, Weddell seal Leptonychotes weddellii, Ross seal Ommatophoca rossii and leopard seal Hydrurga leptonyx and to identify ecological relationships and habitat use patterns. The Atlantic sector of the Southern Ocean (the eastern sector of the Weddell Sea) was surveyed by research teams from Germany, Norway and South Africa using a range of aerial methods over five austral summers between 1996-1997 and 2000-2001. We used these observations to model densities of seals in the area, taking into account haul-out probabilities, survey-specific sighting probabilities and covariates derived from satellite-based ice concentrations and bathymetry. These models predicted the total abundance over the area bounded by the surveys (30°W and 10°E). In this sector of the coast, we estimated seal abundances of: 514 (95 % CI 337-886) x 10**3 crabeater seals, 60.0 (43.2-94.4) x 10**3 Weddell seals and 13.2 (5.50-39.7) x 10**3 leopard seals. The crabeater seal densities, approximately 14,000 seals per degree longitude, are similar to estimates obtained by surveys in the Pacific and Indian sectors by other APIS researchers. Very few Ross seals were observed (24 total), leading to a conservative estimate of 830 (119-2894) individuals over the study area. These results provide an important baseline against which to compare future changes in seal distribution and abundance.
Resumo:
Polycystine radiolarians are used to reconstruct summer sea surface temperatures (SSSTs) for the Late Pleistocene-Holocene (600-13,400 14C years BP) in the Norwegian Sea. At 13,200 14C years BP, the SSST was close to the average Holocene SSST (~12°C). It then gradually dropped to 7.1°C in the Younger Dryas. Near the Younger Dryas-Holocene transition (~10,000 14C years BP), the SSST increased 5°C in about 530 years. Four abrupt cooling events, with temperature drops of up to 2.1°C, are recognized during the Holocene: at 9340, 7100 ("8200 calendar years event"), 6400 and 1650 14C years BP. Radiolarian SSSTs and the isotopic signal from the GISP2 ice core are strongly coupled, stressing the importance of the Norwegian Sea as a mediator of heat/precipitation exchange between the North Atlantic, the atmosphere, and the Greenland ice sheet. Radiolarian and diatom-derived SSSTs display similarities, with the former not showing the recently reported Holocene cooling trend.
Resumo:
A numerical ice-sheet model was used to reconstruct the Late Weichselian glaciation of the Eurasian High Arctic, between Franz Josef Land and Severnaya Zemlya. An ice sheet was developed over the entire Eurasian High Arctic so that ice flow from the central Barents and Kara seas toward the northern Russian Arctic could be accounted for. An inverse approach to modeling was utilized, where ice-sheet results were forced to be compatible with geological information indicating ice-free conditions over the Taymyr Peninsula during the Late Weichselian. The model indicates complete glaciation of the Barents and Kara seas and predicts a "maximum-sized" ice sheet for the Late Weichselian Russian High Arctic. In this scenario, full-glacial conditions are characterized by a 1500-m-thick ice mass over the Barents Sea, from which ice flowed to the north and west within several bathymetric troughs as large ice streams. In contrast to this reconstruction, a "minimum" model of glaciation involves restricted glaciation in the Kara Sea, where the ice thickness is only 300 m in the south and which is free of ice in the north across Severnaya Zemlya. Our maximum reconstruction is compatible with geological information that indicates complete glaciation of the Barents Sea. However, geological data from Severnaya Zemlya suggest our minimum model is more relevant further east. This, in turn, implies a strong paleoclimatic gradient to colder and drier conditions eastward across the Eurasian Arctic during the Late Weichselian.
Resumo:
Depositional environments, stratigraphic relations, and 35 new AMS 14C dates at Cape Shpindler, Yugorski Peninsula, help constrain the late Pleistocene glacial and environmental history of the southern Kara Sea region. Fifteen- to fifty-meter-high coastal exposures reveal a complex package of shallow marine, fluvial, glacial, and postglacial deposits, and are documented here in a 19-km-long cross-section and eight vertical sections. The shallow marine (Unit A), estuarine or prodeltaic (Unit B), and fluvio-deltaic (Unit C) deposits contain an interglacial molluscan fauna, yield radiocarbon dates greater than 40 ka, and may correspond with a regional sea-level highstand during the Eemian. These units are overlain by a diamicton (Unit D), and are pervasively deformed by folds and low- to high-angle faults into a stacked glaciotectonic accretionary complex. The diamicton (Unit D) is a subglacial till, and associated massive ground ice with deformed debris bands (Unit E) appears to be relict glacier ice. Glaciotectonic structures document both southward- and northward-directed glacier movement. Above the till and associated glaciotectonic horizons lies 0- to 11-m-thick postglacial deposits of peatland, eolian, fluvial, and primarily lacustrine origin (Unit F). The postglacial deposits yield radiocarbon ages of 12.8 to 0.8 ka. Thus, at least one regional glaciation is prominently represented in the stratigraphy, and occurred probably after the Eemian but before 12.8 ka. We infer that the bulk of the glacial record corresponds with southward advance by an early Weichselian Kara Sea Ice Sheet, in agreement with other recently documented, regional records from Yamal Peninsula and the Pechora Basin. The timing and source of northward-directed glacier ice are less well constrained. Across the broad expanse of the Eurasian Arctic, Quaternary stratigraphy is still sparsely documented. The new data from Cape Shpindler fill a spatial gap in paleoenvironmental research.
Resumo:
The Late Weichselian glacial history of the continental shelf off western Spitsbergen is discussed, based on acoustic sub-bottom records and sediment cores. The outer part of Isfjorden and the inner shelf to the west of this fjord are characterized by a thin veneer (10-20 m) of glacigenic sediments and absence of ice-marginal features. Towards the outer shelf the sediment thickness increases significantly, and exceeds 500 m at the shelf edge. Possible moraine complexes were identified in this outer part. Sediment cores from the inner shelf sampled a firm diamicton, interpreted as till, beneath soft glaciomarine sediments. Radiocarbon dates on shells from the clay resting directly on the till, suggest an age of around 12,500 yrs B.P. for the base of the marine sequence. We argue that grounded ice covered the sites shortly before. In contrast to suggestions that the fjords and coast were partly ice free during the Late Weischselian, we conclude that the ice must have reached out onto the continental shelf.