43 resultados para Yeast tolerance to biomass hydrolysates
em Publishing Network for Geoscientific
Resumo:
Pteropods are a group of holoplanktonic gastropods for which global biomass distribution patterns remain poorly resolved. The aim of this study was to collect and synthesize existing pteropod (Gymnosomata, Thecosomata and Pseudothecosomata) abundance and biomass data, in order to evaluate the global distribution of pteropod carbon biomass, with a particular emphasis on its seasonal, temporal and vertical patterns. We collected 25 902 data points from several online databases and a number of scientific articles. The biomass data has been gridded onto a 360 x 180° grid, with a vertical resolution of 33 WOA depth levels. Data has been converted to NetCDF format. Data were collected between 1951-2010, with sampling depths ranging from 0-1000 m. Pteropod biomass data was either extracted directly or derived through converting abundance to biomass with pteropod specific length to weight conversions. In the Northern Hemisphere (NH) the data were distributed evenly throughout the year, whereas sampling in the Southern Hemisphere was biased towards the austral summer months. 86% of all biomass values were located in the NH, most (42%) within the latitudinal band of 30-50° N. The range of global biomass values spanned over three orders of magnitude, with a mean and median biomass concentration of 8.2 mg C l-1 (SD = 61.4) and 0.25 mg C l-1, respectively for all data points, and with a mean of 9.1 mg C l-1 (SD = 64.8) and a median of 0.25 mg C l-1 for non-zero biomass values. The highest mean and median biomass concentrations were located in the NH between 40-50° S (mean biomass: 68.8 mg C l-1 (SD = 213.4) median biomass: 2.5 mg C l-1) while, in the SH, they were within the 70-80° S latitudinal band (mean: 10.5 mg C l-1 (SD = 38.8) and median: 0.2 mg C l-1). Biomass values were lowest in the equatorial regions. A broad range of biomass concentrations was observed at all depths, with the biomass peak located in the surface layer (0-25 m) and values generally decreasing with depth. However, biomass peaks were located at different depths in different ocean basins: 0-25 m depth in the N Atlantic, 50-100 m in the Pacific, 100-200 m in the Arctic, 200-500 m in the Brazilian region and >500 m in the Indo-Pacific region. Biomass in the NH was relatively invariant over the seasonal cycle, but more seasonally variable in the SH. The collected database provides a valuable tool for modellers for the study of ecosystem processes and global biogeochemical cycles.
Resumo:
Studies were carried out in the northeastern Sea of Okhotsk, in the zone of interaction of the West Kamchatka and Compensating Currents at the beginning of spring seasonal succession from March 23 to April 14,1998. Samples for analysis of pigmentary and species compositions of phytoplankton were taken from the sea surface layer, depth 0.5 m. To reduce influence of micropatchiness on phytoplankon distribution at each station subsamples 0.7-1 l were collected every 50-100 m. These subsamples were used to make integral samples 4.5-8.0 l. Phytoplankton biomass and concentration of chlorophyll a varied from 18.7 to 490.9 mg/m**3 and from 0.129 to 2.422 mg/m**3, respectively. Total concentration of phytoplankton pigments varied from 0.622 to 6.679 mg/m**3. In samples studied 51 species of microalgae from 5 orders were found. In terms of the number of species, Bacillariophyta (31 species) and Dinophyta (15 species) prevailed. Diatomaceous algae make up more than 80% of the total phytoplankton biomass in waters of the Compensating Current, from 50 to 80% in intermediate waters, and less than 50% in waters of the West Kamchatka Current. Phytoplankton populations consisting primarily of diatoms were characterized by very low chlorophyll a to biomass ratio (0.1 %). It is three times lower than the ratio observed in phytoplankton populations that were close by species composition and size composition in this area in the late April-early May 1996.
Resumo:
Rising anthropogenic carbon dioxide (CO2) dissolving into coastal waters is decreasing the pH and carbonate ion concentration, thereby lowering the saturation state of calcium carbonate (CaCO3) minerals through a process named ocean acidification (OA). The unprecedented threats posed by such low pH on calcifying larvae of several edible oyster species have not yet been fully explored. Effects of low pH (7.9, 7.6, 7.4) on the early growth phase of Portuguese oyster (Crassostrea angulata) veliger larvae was examined at ambient salinity (34 ppt) and the low-salinity (27 ppt) treatment. Additionally, the combined effect of pH (8.1, 7.6), salinity (24 and 34 ppt) and temperature (24 °C and 30 °C) was examined using factorial experimental design. Surprisingly, the early growth phase from hatching to 5-day-old veliger stage showed high tolerance to pH 7.9 and pH 7.6 at both 34 ppt and 27 ppt. Larval shell area was significantly smaller at pH 7.4 only in low-salinity. In the 3-factor experiment, shell area was affected by salinity and the interaction between salinity and temperature but not by other combinations. Larvae produced the largest shell at the elevated temperature in low-salinity, regardless of pH. Thus the growth of the Portuguese oyster larvae appears to be robust to near-future pH level (> 7.6) when combined with projected elevated temperature and low-salinity in the coastal aquaculture zones of South China Sea.
Resumo:
Recently, it has been suggested that there are conditions under which some coral species appear to be resistant to the effects of ocean acidification. To test if such resistance can be explained by environmental factors such as light and food availability, the present study investigated the effect of 3 feeding regimes crossed with 2 light levels on the response of the coral Porites rus to 2 levels of pCO2 at 28 °C. After 1, 2, and 3 weeks of incubation under experimental conditions, none of the factors-including pCO2-significantly affected area-normalized calcification and biomass-normalized calcification. Biomass also was unaffected during the first 2 weeks, but after 3 weeks, corals that were fed had more biomass per unit area than starved corals. These results suggest that P. rus is resistant to short-term exposure to high pCO2, regardless of food availability and light intensity. P. rus might therefore represent a model system for exploring the genetic basis of tolerance to OA.
Resumo:
We compiled a database of bacterial abundance of 39 766 data points. After gridding with 1° spacing, the database covers 1.3% of the ocean surface. There is data covering all ocean basins and depth except the Southern Hemisphere below 350 m or from April until June. The average bacterial biomass is 3.9 ± 3.6 µg l-1 with a 20-fold decrease between the surface and the deep sea. We estimate a total ocean inventory of about 1.3 - 1029 bacteria. Using an average of published open ocean measurements for the conversion from abundance to carbon biomass of 9.1 fg cell-1, we calculate a bacterial carbon inventory of about 1.2 Pg C. The main source of uncertainty in this inventory is the conversion factor from abundance to biomass.
Resumo:
Corals are acclimatized to populate dynamic habitats that neighbour coral reefs. Habitats such as seagrass beds exhibit broad diel changes in temperature and pH that routinely expose corals to conditions predicted for reefs over the next 50-100 years. However, whether such acclimatization effectively enhances physiological tolerance to, and hence provides refuge against, future climate scenarios remains unknown. Also, whether corals living in low-variance habitats can tolerate present-day high-variance conditions remains untested. We experimentally examined how pH and temperature predicted for the year 2100 affects the growth and physiology of two dominant Caribbean corals (Acropora palmata and Porites astreoides) native to habitats with intrinsically low (outer-reef terrace, LV) and/or high (neighbouring seagrass, HV) environmental variance. Under present-day temperature and pH, growth and metabolic rates (calcification, respiration and photosynthesis) were unchanged for HV versus LV populations. Superimposing future climate scenarios onto the HV and LV conditions did not result in any enhanced tolerance to colonies native to HV. Calcification rates were always lower for elevated temperature and/or reduced pH. Together, these results suggest that seagrass habitats may not serve as refugia against climate change if the magnitude of future temperature and pH changes is equivalent to neighbouring reef habitats.
Resumo:
The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present collection presents the original data sets used to compile Global distributions of diazotrophs abundance, biomass and nitrogen fixation rates
Resumo:
The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. The present data set presents depth integrated values of diazotrophs abundance and biomass, computed from a collection of source data sets.
Resumo:
The MAREDAT atlas covers 11 types of plankton, ranging in size from bacteria to jellyfish. Together, these plankton groups determine the health and productivity of the global ocean and play a vital role in the global carbon cycle. Working within a uniform and consistent spatial and depth grid (map) of the global ocean, the researchers compiled thousands and tens of thousands of data points to identify regions of plankton abundance and scarcity as well as areas of data abundance and scarcity. At many of the grid points, the MAREDAT team accomplished the difficult conversion from abundance (numbers of organisms) to biomass (carbon mass of organisms). The MAREDAT atlas provides an unprecedented global data set for ecological and biochemical analysis and modeling as well as a clear mandate for compiling additional existing data and for focusing future data gathering efforts on key groups in key areas of the ocean. This is a gridded data product about diazotrophic organisms . There are 6 variables. Each variable is gridded on a dimension of 360 (longitude) * 180 (latitude) * 33 (depth) * 12 (month). The first group of 3 variables are: (1) number of biomass observations, (2) biomass, and (3) special nifH-gene-based biomass. The second group of 3 variables is same as the first group except that it only grids non-zero data. We have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling more than 11,000 direct field measurements including 3 sub-databases: (1) nitrogen fixation rates, (2) cyanobacterial diazotroph abundances from cell counts and (3) cyanobacterial diazotroph abundances from qPCR assays targeting nifH genes. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. Data are assigned to 3 groups including Trichodesmium, unicellular diazotrophic cyanobacteria (group A, B and C when applicable) and heterocystous cyanobacteria (Richelia and Calothrix). Total nitrogen fixation rates and diazotrophic biomass are calculated by summing the values from all the groups. Some of nitrogen fixation rates are whole seawater measurements and are used as total nitrogen fixation rates. Both volumetric and depth-integrated values were reported. Depth-integrated values are also calculated for those vertical profiles with values at 3 or more depths.
Resumo:
The copepod Calanus finmarchicus is the dominant species of the meso-zooplankton in the Norwegian Sea, and constitutes an important link between the phytoplankton and the higher trophic levels in the Norwegian Sea food chain. An individualbased model for C. finmarchicus, based on super-individuals and evolving traits for behaviour, stages, etc., is two-way coupled to the NORWegian ECOlogical Model system (NORWECOM). One year of modelled C. finmarchicus spatial distribution, production and biomass are found to represent observations reasonably well. High C. finmarchicus abundance is found along the Norwegian shelf-break in the early summer, while the overwintering population is found along the slope and in the deeper Norwegian Sea basins. The timing of the spring bloom is generally later than in the observations. Annual Norwegian Sea production is found to be 29 million tonnes of carbon and a production to biomass (P/B) ratio of 4.3 emerges. Sensitivity tests show that the modelling system is robust to initial values of behavioural traits and with regards to the number of super-individuals simulated given that this is above about 50,000 individuals. Experiments with the model system indicate that it provides a valuable tool for studies of ecosystem responses to causative forces such as prey density or overwintering population size. For example, introducing C. finmarchicus food limitations reduces the stock dramatically, but on the other hand, a reduced stock may rebuild in one year under normal conditions. The NetCDF file contains model grid coordinates and bottom topography.
Resumo:
As anthropogenic climate change is an ongoing concern, scientific investigations on its impacts on coral reefs are increasing. Although impacts of combined ocean acidification (OA) and temperature stress (T) on reef-building scleractinian corals have been studied at the genus, species and population levels, there are little data available on how individual corals respond to combined OA and anomalous temperatures. In this study, we exposed individual colonies of Acropora digitifera, Montipora digitata and Porites cylindrica to four pCO2-temperature treatments including 400 µatm-28 °C, 400 µatm-31 °C, 1000 µatm-28 °C and 1000 µatm-31 °C for 26 days. Physiological parameters including calcification, protein content, maximum photosynthetic efficiency, Symbiodinium density, and chlorophyll content along with Symbiodinium type of each colony were examined. Along with intercolonial responses, responses of individual colonies versus pooled data to the treatments were investigated. The main results were: 1) responses to either OA or T or their combination were different between individual colonies when considering physiological functions; 2) tolerance to either OA or T was not synonymous with tolerance to the other parameter; 3) tolerance to both OA and T did not necessarily lead to tolerance of OA and T combined (OAT) at the same time; 4) OAT had negative, positive or no impacts on physiological functions of coral colonies; and 5) pooled data were not representative of responses of all individual colonies. Indeed, the pooled data obscured actual responses of individual colonies or presented a response that was not observed in any individual. From the results of this study we recommend improving experimental designs of studies investigating physiological responses of corals to climate change by complementing them with colony-specific examinations.
Resumo:
There is increasing evidence that different light intensities strongly modulate the effects of ocean acidification (OA) on marine phytoplankton. The aim of the present study was to investigate interactive effects of OA and dynamic light, mimicking natural mixing regimes. The Antarctic diatom Chaetoceros debilis was grown under two pCO2 (390 and 1000 latm) and light conditions (constant and dynamic), the latter yielding the same integrated irradiance over the day. To characterize interactive effects between treatments, growth, elemental composition, primary production and photophysiology were investigated. Dynamic light reduced growth and strongly altered the effects of OA on primary production, being unaffected by elevated pCO2 under constant light, yet significantly reduced under dynamic light. Interactive effects between OA and light were also observed for Chl production and particulate organic carbon (POC) quotas. Response patterns can be explained by changes in the cellular energetic balance. While the energy transfer efficiency from photochemistry to biomass production (Phi_e,C) was not affected by OA under constant light, it was drastically reduced under dynamic light. Contrasting responses under different light conditions need to be considered when making predictions regarding a more stratified and acidified future ocean.
Resumo:
The Arctic Ocean is a bellwether for ocean acidification, yet few direct Arctic studies have been carried out and limited observations exist, especially in winter. We present unique under-ice physicochemical data showing the persistence of a mid water column area of high CO2 and low pH through late winter, Zooplankton data demonstrating that the dominant copepod species are distributed across these different physicochemical conditions, and empirical data demonstrating that these copepods show sensitivity to pCO2 that parallels the range of natural pCO2 they experience through their daily vertical migration behavior. Our data, collected as part of the Catlin Arctic Survey, provide unique insight into the link between environmental variability, behavior, and an organism's physiological tolerance to CO2 in key Arctic biota.
Resumo:
Species composition and abundance of phytoplankton and chlorophyll concentration were measured at three horizons of 9 stations in the Nha Trang Bay of the South China Sea in March 1998. Vertical distribution of fluorescence parameters, temperature and irradiance were measured in the 0-18 m layer of the water column at 21 stations. It was shown that according to biomass (B) and chlorophyll concentration (Chl) the Bay is mezotrophic. B and Chl in the water column increased seaward. Mean values of Chl in the southern part of the Bay exceeded those in northern part. Mean values of B were similar. B and Chl in the bottom layer exceeded ones in the upper layer. Diatoms dominated in species diversity and abundance. Diatom Guinardia striata made the main contribution to phytoplankton biomass. Similarity of phytoplankton was high. In the upper layer phytoplankton was photoinhibited during the most part of the light period, but at the bottom photosynthetic activity was high. Water column B varied in an order of magnitude during the daily cycle mainly because of B variations in the bottom layer due to tide flow.
Resumo:
I developed a new model for estimating annual production-to-biomass ratio P/B and production P of macrobenthic populations in marine and freshwater habitats. Self-learning artificial neural networks (ANN) were used to model the relationships between P/B and twenty easy-to-measure abiotic and biotic parameters in 1252 data sets of population production. Based on log-transformed data, the final predictive model estimates log(P/B) with reasonable accuracy and precision (r2 = 0.801; residual mean square RMS = 0.083). Body mass and water temperature contributed most to the explanatory power of the model. However, as with all least squares models using nonlinearly transformed data, back-transformation to natural scale introduces a bias in the model predictions, i.e., an underestimation of P/B (and P). When estimating production of assemblages of populations by adding up population estimates, accuracy decreases but precision increases with the number of populations in the assemblage.