10 resultados para Year 7 to 7
em Publishing Network for Geoscientific
Resumo:
The scope of this PhD thesis was the hydrogeological conceptualisation of the Upper Ouémé river catchment in Benin. The study area exceeds 14,500 km**2 and is underlain by a crystalline basement. At this setting the typical sequence of aquifers - a regolith aquifer at the top and a fractured bedrock aquifer at the bottom - is encountered, which is found in basement areas all over Africa and elsewhere in the world. The chosen regional approach revealed important information about the hydrochemistry and hydrogeology of this catchment. Based on the regional conceptual model a numerical groundwater flow model was designed. The numerical model was used to estimate the impact of climate change on the regional groundwater resources. This study was realised within the framework of the German interdisciplinary research project IMPETUS (English translation: "Integrated approach to the efficient management of scarce water resources in West Africa"), which is jointly managed by the German universities of Bonn and Cologne. Since the year 2000 the Upper Ouémé catchment was the principal target for investigations into the relevant processes of the regional water cycle. A first study from 2000 to 2003 (Fass, 2004, http://nbn-resolving.de/urn:nbn:de:hbz:5n-03849) focused on the hydrogeology of a small local catchment (~30 km**2). In the course of this thesis five field campaigns were underdone from the year 2004 to 2006. In the beginning of 2004 a groundwater monitoring net was installed based on 12 automatic data loggers. Manual piezometric measurements and the sampling of groundwater and surface water were realised for each campaign throughout the whole study area. Water samples were analysed for major ions, for a choice of heavy metals and for their composition by deuterium, oxygen-18 and tritium. The numerical model was performed with FEFLOW. The hydraulic and hydrochemical characteristics were described for the regolith aquifer and the bedrock aquifer. The regolith aquifer plays the role of the groundwater stock with low conductivity while the fractures of the bedrock may conduct water relatively fast towards extraction points. Flow in fractures of the bedrock depends on the connectivity of the fracture network which might be of local to subregional importance. Stable isotopes in combination with hydrochemistry proved that recharge occurs on catchment scale and exclusively by precipitation. Influx of groundwater from distant areas along dominant structures like the Kandi fault or from the Atacora mountain chain is excluded. The analysis of tritium in groundwater from different depths revealed the interesting fact of the strongly rising groundwater ages. Bedrock groundwater may possibly be much older than 50 years. Equilibrium phases of the silicate weathering products kaolinite and montmorillonite showed that the deeper part of the regolith aquifer and the bedrock aquifer feature either stagnant or less mobile groundwater while the shallow aquifer level is influenced by seasonal groundwater table fluctuations. The hydrochemical data characterised this zone by the progressive change of the hydrochemical facies of recently infiltrated rainwater on its flow path into deeper parts of the aquifers. Surprisingly it was found out that seasonal influences on groundwater hydrochemistry are minor, mainly because they affect only the groundwater levels close to the surface. The transfer of the hydrogeological features of the Upper Ouémé catchment into a regional numerical model demanded a strong simplification. Groundwater tables are a reprint of the general surface morphology. Pumping or other types of groundwater extraction would have only very local impact on the available groundwater resources. It was possible to integrate IMPETUS scenario data into the groundwater model. As a result it was shown that the impact of climate change on the groundwater resources until the year 2025 under the given conditions will be negligible due to the little share of precipitation needed for recharge and the low water needs for domestic use. Reason for concern is the groundwater quality on water points in the vicinity of settlements because of contamination by human activities as shown for the village of Dogué. Nitrate concentrations achieved in many places already alerting levels. Health risks from fluoride or heavy metals were excluded for the Upper Ouémé area.
Resumo:
Variability of total alkalinity in sea ice of the high-latitudinal Arctic from November 2005 to May 2006 is considered. For the bulk of one- and two-year sea ice, alkalinity dependence on salinity is described as TA = k x Sal, where k is salinity/alkalinity ratio in under-ice water. The given relationship is valid within a wide range of salinity from 0.1 psu in desalinated fraction of two-year ice to 36 psu in snow on the young ice surface. Geochemically significant deviations from the relationship noted were observed exclusively in snow and the upper layer of one-year ice. In the upper layer of one-year ice, deficiency of alkalinity is observed ( delta TA ~= -0.07 mEq/kg, or -15%). In snow on the surface of the one-year ice, alkalinity excess is formed under desalination ( delta TA is as high as 1.3 mEq/kg, or 380%). Deviations registered are caused by possibility of carbonate precipitation in form of CaCO3 x 6H2O under seawater freezing. It is shown that ice formation and the following melting might cause losses of atmospheric CO2 of up to 3 x 10**12 gC/year.
Resumo:
The Norwegian spring spawning (NSS) herring is an ecologically important fish stock in the Norwegian Sea, and with a catch volume exceeding one million tons a year it is also economically important and a valuable food source. In order to provide a baseline of the levels of contaminants in this fish stock, the levels of organohalogen compounds were determined in 800 individual herring sampled at 29 positions in the Norwegian Sea and off the coast of Norway. Due to seasonal migration, the herring were sampled where they were located during the different seasons. Concentrations of dioxins and dioxin-like PCBs, non-dioxin-like PCBs (PCB7) and PBDEs were determined in fillet samples of individual herring, and found to be relatively low, with means (min-max) of 0.77 (0.24-3.5) ngTEQ/kg wet weight (ww), 5.0 (1.4-24) µg/kg ww and 0.47 (0.091-3.1) µg/kg ww, respectively. The concentrations varied throughout the year due to the feeding- and spawning cycle: Starved, pre-spawning herring caught off the Norwegian coast in January-February had the highest levels and those caught in the Norwegian Sea in April-June, after further starvation and spawning, had the lowest levels. These results show that the concentrations of organohalogen compounds in NSS herring are relatively low and closely tied to their physiological condition, and that in the future regular monitoring of NSS herring should be made in the spawning areas off the Norwegian coast in late winter.
Resumo:
Fossil shells of planktonic foraminifera serve as the prime source of information on past changes in surface ocean conditions. Because the population size of planktonic foraminifera species changes throughout the year, the signal preserved in fossil shells is biased towards the conditions when species production was at its maximum. The amplitude of the potential seasonal bias is a function of the magnitude of the seasonal cycle in production. Here we use a planktonic foraminifera model coupled to an ecosystem model to investigate to what degree seasonal variations in production of the species Neogloboquadrina pachyderma may affect paleoceanographic reconstructions during Heinrich Stadial 1 (~18-15 cal. ka B.P.) in the North Atlantic Ocean. The model implies that during Heinrich Stadial 1 the maximum seasonal production occurred later in the year compared to the Last Glacial Maximum (~21-19 cal. ka B.P.) and the pre-industrial era north of 30 ºN. A diagnosis of the model output indicates that this change reflects the sensitivity of the species to the seasonal cycle of sea-ice cover and food supply, which collectively lead to shifts in the modeled maximum production from the Last Glacial Maximum to Heinrich Stadial 1 by up to six months. Assuming equilibrium oxygen isotopic incorporation in the shells of N. pachyderma, the modeled changes in seasonality would result in an underestimation of the actual magnitude of the meltwater isotopic signal recorded by fossil assemblages of N. pachyderma wherever calcification is likely to take place.
Resumo:
CO2 emissions are leading to an acidification of the oceans. Predicting marine community vulnerability towards acidification is difficult, as adaptation processes cannot be accounted for in most experimental studies. Naturally CO2 enriched sites thus can serve as valuable proxies for future changes in community structure. Here we describe a natural analogue site in the Western Baltic Sea. Seawater pCO2 in Kiel Fjord is elevated for large parts of the year due to upwelling of CO2 rich waters. Peak pCO2 values of >230 Pa (>2300 µatm) and pHNBS values of <7.5 are encountered during summer and autumn, average pCO2 values are ~70 Pa (~700 µatm). In contrast to previously described naturally CO2 enriched sites that have suggested a progressive displacement of calcifying auto- and heterotrophic species, the macrobenthic community in Kiel Fjord is dominated by calcifying invertebrates. We show that blue mussels from Kiel Fjord can maintain control rates of somatic and shell growth at a pCO2 of 142 Pa (1400 µatm, pHNBS = 7.7). Juvenile mussel recruitment peaks during the summer months, when high water pCO2 values of ~100 Pa (~1000 µatm) prevail. Our findings indicate that calcifying keystone species may be able to cope with surface ocean pHNBS values projected for the end of this century when food supply is sufficient. However, owing to non-linear synergistic effects of future acidification and upwelling of corrosive water, peak seawater pCO2 in Kiel Fjord and many other productive estuarine habitats could increase to values >400 Pa (>4000 µatm). These changes will most likely affect calcification and recruitment, and increase external shell dissolution.
Resumo:
We have studied the chemical zoning of plagioclase phenocrysts from the slow-spreading Mid-Atlantic Ridge and the intermediate-spreading rate Costa Rica Rift to obtain the time scales of magmatic processes beneath these ridges. The anorthite content, Mg, and Sr in plagioclase phenocrysts from the Mid-Atlantic Ridge can be interpreted as recording initial crystallisation from a primitive magma (~11 wt% MgO) in an open system. This was followed by crystal accumulation in a mush zone and later entrainment of crystals into the erupted magma. The initial magma crystallised plagioclase more anorthitic than those in equilibrium with any erupted basalt. Evidence that the crystals accumulated in a mush zone comes from both: (1) plagioclase rims that were in equilibrium with a Sr-poor melt requiring extreme differentiation; and (2) different crystals found in the same thin section having different histories. Diffusion modelling shows that crystal residence times in the mush were <140 years, whereas the interval between mush disaggregation and eruption was ?1.5 years. Zoning of anorthite content and Mg in plagioclase phenocrysts from the Costa Rica Rift show that they partially or completely equilibrated with a MgO-rich melt (>11 wt%). Partial equilibration in some crystals can be modelled as starting <1 year prior to eruption but for others longer times are required for complete equilibration. This variety of times is most readily explained if the mixing occurred in a mush zone. None of the plagioclase phenocrysts from the Costa Rica Rift that we studied have Mg contents in equilibrium with their host basalt even at their rims, requiring mixing into a much more evolved magma within days of eruption. In combination these observations suggest that at both intermediate- and slow-spreading ridges: (1) the chemical environment to which crystals are exposed changes on annual to decadal time scales; (2) plagioclase crystals record the existence of melts unlike those erupted; and (3) disaggregation of crystal mush zones appears to precede eruption, providing an efficient mechanism by which evolved interstitial melt can be mixed into erupted basalts.
Resumo:
Recent changes in the dynamics of Greenland's marine terminating outlet glaciers indicate a rapid and complex response to external forcing. Despite observed ice front retreat and recent geophysical evidence for accelerated mass loss along Greenland's northwestern margin, it is unclear whether west Greenland glaciers have undergone the synchronous speed-up and subsequent slow-down as observed in southeastern glaciers earlier in the decade. To investigate changes in west Greenland outlet glacier dynamics and the potential controls behind their behavior, we derive time series of front position, surface elevation, and surface slope for 59 marine terminating outlet glaciers and surface speeds for select glaciers in west Greenland from 2000 to 2009. Using these data, we look for relationships between retreat, thinning, acceleration, and geometric parameters to determine the first-order controls on glacier behavior. Our data indicate that changes in front positions and surface elevations were asynchronous on annual time scales, though nearly all glaciers retreated and thinned over the decade. We found no direct relationship between retreat, acceleration, and external forcing applicable to the entire region. In regard to geometry, we found that, following retreat, (1) glaciers with grounded termini experienced more pronounced changes in dynamics than those with floating termini and (2) thinning rates declined more quickly for glaciers with steeper slopes. Overall, glacier geometry should influence outlet glacier dynamics via stress redistribution following perturbations at the front, but our data indicate that the relative importance of geometry as a control of glacier behavior is highly variable throughout west Greenland.
Resumo:
The flux of materials to the deep sea is dominated by larger, organic-rich particles with sinking rates varying between a few meters and several hundred meters per day. Mineral ballast may regulate the transfer of organic matter and other components by determining the sinking rates, e.g. via particle density. We calculated particle sinking rates from mass flux patterns and alkenone measurements applying the results of sediment trap experiments from the Atlantic Ocean. We have indication for higher particle sinking rates in carbonate-dominated production systems when considering both regional and seasonal data. During a summer coccolithophorid bloom in the Cape Blanc coastal upwelling off Mauritania, particle sinking rates reached almost 570 m per day, most probably due the fast sedimentation of densely packed zooplankton fecal pellets, which transport high amounts of organic carbon associated with coccoliths to the deep ocean despite rather low production. During the recurring winter-spring blooms off NW Africa and in opal-rich production systems of the Southern Ocean, sinking rates of larger particles, most probably diatom aggregates, showed a tendency to lower values. However, there is no straightforward relationship between carbonate content and particle sinking rates. This could be due to the unknown composition of carbonate and/or the influence of particle size and shape on sinking rates. It also remains noticeable that the highest sinking rates occurred in dust-rich ocean regions off NW Africa, but this issue deserves further detailed field and laboratory investigations. We obtained increasing sinking rates with depth. By using a seven-compartment biogeochemical model, it was shown that the deep ocean organic carbon flux at a mesotrophic sediment trap site off Cape Blanc can be captured fairly well using seasonal variable particle sinking rates. Our model provides a total organic carbon flux of 0.29 Tg per year down to 3000 m off the NW African upwelling region between 5 and 35° N. Simple parameterisations of remineralisation and sinking rates in such models, however, limit their capability in reproducing the flux variation in the water column.
Resumo:
Four marine fish species are among the most important on the world market: cod, salmon, tuna, and sea bass. While the supply of North American and European markets for two of these species - Atlantic salmon and European sea bass - mainly comes from fish farming, Atlantic cod and tunas are mainly caught from wild stocks. We address the question what will be the status of these wild stocks in the midterm future, in the year 2048, to be specific. Whereas the effects of climate change and ecological driving forces on fish stocks have already gained much attention, our prime interest is in studying the effects of changing economic drivers, as well as the impact of variable management effectiveness. Using a process-based ecological-economic multispecies optimization model, we assess the future stock status under different scenarios of change. We simulate (i) technological progress in fishing, (ii) increasing demand for fish, and (iii) increasing supply of farmed fish, as well as the interplay of these driving forces under different sce- narios of (limited) fishery management effectiveness. We find that economic change has a substantial effect on fish populations. Increasing aquaculture production can dampen the fishing pressure on wild stocks, but this effect is likely to be overwhelmed by increasing demand and technological progress, both increasing fishing pressure. The only solution to avoid collapse of the majority of stocks is institutional change to improve management effectiveness significantly above the current state. We conclude that full recognition of economic drivers of change will be needed to successfully develop an integrated ecosystem management and to sustain the wild fish stocks until 2048 and beyond.
Resumo:
The spatial and temporal patterns of fog and low clouds along the South-Western African coast are characterized based on an evaluation of Meteosat SEVIRI satellite data. A technique for the detection of fog/low clouds in the region is introduced, and validated using 1 year of CALIOP cloud lidar products, showing reliable performance. The frequency of fog and low cloud in the study area is analyzed by systematic application of the technique to all available Meteosat SEVIRI scenes from 2004 to 2009, for 7:00 UTC and 14:00 UTC. The highest frequencies are encountered in the area around Walvis Bay, with a peak in the summer months. Fog and low clouds clear by 14:00 UTC almost everywhere over land.