5 resultados para YEARLING CALVES
em Publishing Network for Geoscientific
Resumo:
Muskoxen populations were surveyed in the course of 3 expeditions to North East Greenland to provide data on present status and habitat requirements in the region between 72 and 74 deg latitude North. The distribution is primarily affected by the snow cover pattern and shows densities from less than 0.1 ind/km**2 to 1.5 ind/km**2. Ranges unutilized by muskoxen prior to 1940 now support high densities. The snow cover influences also the population dynamics, as shown by the streng correlation between the calf crop and the amount of snow. The total population is estimated to be about 1000 to 1500 individuals far the whole region.
Resumo:
Summary: Summer daily activity and movement patterns and habitat selectivity by Peary caribou (Rangifer tarandus pearyi) and muskoxen (Ovibos moschatus) were studied at two sites in Canada's High Arctic. Caribou showed a greater mobility and broader selection of habitat than muskoxen. Muskoxen fed more than they rested in contrast to the greater amount of time spent resting than feeding by caribou. The sedge-producing hydric-meadow vegetalion type was highly selected for by muskoxen at both study areas; caribou selected against the hydric-meadow type and preferred the polar desert and mesic-meadow types. Caribou displayed a greater variety in plant species selection than muskoxen, favouring willow (Salix arctica), grasses, forbs, and the flowers of vascular plants- Muskoxen feci extensively on sedges in the hydric-meadow. It is suggested the abundance and distribution of sedge-producing meadows may control the regional abundance and distribution of muskoxen. Winter climate is probably the ultimate factor controlling densities of muskoxen and caribou in the High Arctic.
Resumo:
The role of hotter than ambient plume mantle in the formation of a rifted volcanic margin in the northern Arabian Sea is investigated using subsidence analysis of a drill site located on the seismically defined Somnath volcanic ridge. The ridge has experienced >4 km of subsidence since 65 Ma and lies within oceanic lithosphere. We estimate crustal thickness to be 9.5-11.5 km. Curiously <400 m of the thermal subsidence occurred prior to 37 Ma, when subsidence rates would normally be at a maximum. We reject the hypothesis that this was caused by increasing plume dynamic support after continental break-up because the size of the thermal anomalies required are unrealistic (>600°C), especially considering the rapid northward drift of India relative to the Deccan-Réunion hotspot. We suggest that this reflects very slow lithospheric growth, possibly caused by vigorous asthenospheric convection lasting >28 m.y., and induced by the steep continent-ocean boundary. Post-rift slow subsidence is also recognized on volcanic margins in the NE Atlantic and SE Newfoundland and cannot be used as a unique indicator of plume mantle involvement in continental break-up.