13 resultados para Y-ZR ALLOYS
em Publishing Network for Geoscientific
Resumo:
In-situ proton-microprobe analyses are presented for glasses, plagioclases, pyroxenes, olivines, and spinels in eleven samples from Sites 834-836, 839, and 841 (vitrophyric rhyolite), plus a Tongan dacite. Elements analyzed are Mn, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Pb, and Sn (in spinels only). The data are used to calculate two sets of partition coefficients, one set based on the ratio of element in mineral/element in coexisting glass. The second set of coefficients, thought to be more robust, is corrected by application of the Rayleigh fractionation equations, which requires additional use of modal data. Data are presented for phenocryst core-rim phases and microphenocryst-groundmass phases from a few samples. Comparison with published coefficients reveals an overall consistency with those presented here, but with some notable anomalies. Examples are relatively high Zr values for pyroxenes and abnormally low Mn values in olivines and clinopyroxenes from Site 839 lavas. Some anomalies may reflect kinetic effects, but interpretation of the coefficients is complicated, especially in olivines from Sites 836 and 839, by possible crystal-liquid disequilibrium resulting from mixing processes.
Resumo:
We document the first-known Mesoproterozoic ophiolite from the southwestern part of the Amazon craton, corresponding to the Trincheira Complex of Calymmian age, and propose a tectonic model that explains many previously enigmatic features of the Precambrian history of this key craton, and discuss its role in the reconstruction of the Columbia supercontinent. The complex comprises extrusive rocks (fine-grained amphibolites derived from massive and pillowed basalts), mafic-ultramafic intrusive rocks, chert, banded iron formation (BIFs), pelites, psammitic and a smaller proportion of calc-silicate rocks. This sequence was deformed, metasomatized and metamorphosed during the development of the Alto Guaporé Belt, a Mesoproterozoic accretionary orogen. The rocks were deformed by a single tectonic event, which included isoclinal folding and metamorphism of the granulite-amphibolite facies. Layered magmatic structures were preserved in areas of low strain, including amygdaloidal and cumulate structures. Metamorphism was pervasive and reached temperatures of 780-853°C in mafic granulites and 680-720°C in amphibolites under an overall pressure of 6.8 kbar. The geochemical composition of the extrusive and intrusive rocks indicates that all noncumulus mafic-ultramafic rocks are tholeiitic basalts. The mafic-ultramafic rocks display moderately to strongly fractionation of light rare earth elements (LREE), near-flat heavy rare earth elements (HREE) patterns and moderate to strong negative high field strength elements (HFSE) anomalies (especially Nb), a geochemical signature typical of subduction zones. The lowest units of mafic granulites and porphyroblastic amphibolites in the Trincheira ophiolite are similar to the modern mid-ocean ridge basalt (MORB), although they locally display small Ta, Ti and Nb negative anomalies, indicating a small subduction influence. This behavior changes to an island arc tholeiites (IAT) signature in the upper units of fine-grained amphibolites and amphibole rich-amphibolites, characterized by progressive depletion in the incompatible elements and more pronounced negative Ta and Nb anomalies, as well as common Ti and Zr negative anomalies. Tectono-magmatic variation diagrams and chondrite-normalized REE and primitive mantle normalized patterns suggest a back-arc to intra-oceanic island arc tectonic regime for the eruption of these rocks. Therefore, the Trincheira ophiolite appears to have originated in an intraoceanic supra-subduction setting composed of an arc-back-arc system. Accordingly, the Trincheira Complex is a record of oceanic crust relics obducted during the collision of the Amazon craton and the Paraguá block during the Middle Mesoproterozoic. Thus, the recognition of the Trincheira ophiolite and suture significantly changes views on the evolution of the southern margin of the Amazon craton, and how it can influence the global tectonics and the reconstruction of the continents.
Resumo:
Leg 65 of the Deep Sea Drilling Project successfully recovered basalts from four sites in the mouth of the Gulf of California, thus completing a transect begun during Leg 64 from the continental margin of Baja California to the east side of the East Pacific Rise (EPR). Sixty-three whole-rock samples from Sites 482, 483, and 485 have been analyzed by X-ray fluorescence techniques, and a further eleven samples by instrumental neutron-activation techniques, in order to assess magma variability within and between sites. Although the major element compositions and absolute hygromagmatophile (HYG) element abundances are quite variable, all of the basalts are subalkaline tholeiites exhibiting strong more-HYG element (e.g., Rb, La, Nb, Ta) depletion (LaN/YbN ~ 0.4; Nb/Zr ~ 0.02; Ba/Zr ~ 0.23; Th/Hf ~ 0.05). These ratios, together with La/Ta ratios of 20 and Th/Ta ratios of 1.25, demonstrate that the Leg 65 basalts resemble the depleted "N-type" ocean ridge basalts recovered from the Mid-Atlantic Ridge (MAR) at 22 °N and other sections of the EPR. Zr/Ti, Zr/Y, and La/Yb ratios increase with increasing fractionation. It is clear that the basalts recovered from Sites 482, 483, and 485 were all derived from a compositionally similar source and that the compositional differences observed between lithological units can be explained by varying degrees of open system fractional crystallization (magma mixing) in subridge magma chambers. The basaltic rocks recovered from Site 474 near the margin of Baja California, and Sites 477, 478, and 481 in the Guaymas Basin, all drilled during Leg 64, have consistently higher Th/Hf, La/Sm, Zr/Ti, and Zr/Y ratios and higher absolute Sr contents than the Leg 65 basalts. While some of these variations may be explained by different conditions of partial melting, it is considered more likely that the mantle source underlying the Guaymas Basin is chemically distinct from that feeding the EPR at the mouth of the Gulf. These source variations probably reflect the complex tectonic setting of the Gulf of California, the magmas formed at the inception of spreading and in the central part of the Gulf containing a minor but significant component of sub-continental (calc-alkaline) material.
Resumo:
Leg 58 successfully recovered basalt at Sites 442, 443, and 444, in the Shikoku Basin, and at Site 446 in the Daito Basin. Only at Site 442 did penetration reach unequivocal oceanic layer 2; at the other sites, only off-axis sills and flows were sampled. Petrographic observations indicate that back-arc basalts from the Shikoku Basin, with the exception of the kaersutite-bearing upper sill at Site 444, are mineralogically similar to basalts being erupted at normal mid-ocean ridges. However, the Shikoku Basin basalts are commonly very vesicular, indicating a high volatile content in the magmas. Site 446 in the Daito Basin penetrated a succession of 23 sills which include both kaersutite-bearing and kaersutite-free basalt varieties. A total of 187 samples from the four sites has been analyzed for major and trace elements using X-ray-fluorescence techniques. Chemically, the basalts from Sites 442 and 443 and the lower sill of Site 444 are subalkaline tholeiites and resemble N-type ocean-ridge basalts found along the East Pacific Rise and at 22° N on the Mid-Atlantic Ridge (MAR), although they are not quite as depleted in certain hygromagmatophile (HYG) elements. They do not show any chemical affinities with island-arc tholeiites. The basalts from Site 446 and from the upper sill at Site 444 show alkaline and tholeiitic tendencies, and are enriched in the more-HYG elements; they chemically resemble enriched or E-type basalts and their differentiates found along sections of the MAR (e.g., 45°N) and on ocean islands (e.g., Iceland and the Azores). Most of the intra-site variation may be attributed to crystal settling within individual massive flows and sills, to high-level fractional crystallization in sub-ridge magma chambers, or, where there is evidence of a long period of magmatic quiescence between units, to batch partial melting. However, the basalts from Sites 442 and 443 and from the lower sill at Site 444 cannot easily be related to those from Site 446 and the upper sill at Site 444, and it is possible that the different basalt types were derived from chemically distinct mantle sources. From comparison of the Leg 58 data with those already available for other intra-oceanic back-arc basins, it appears that the mantle sources giving rise to back-arc-basin basalts are chemically as diverse as those for mid-ocean ridges. In addition, the high vesicularity of the Shikoku Basin basalts supports previous observations that the mantle source of back-arc-basin basalts may be contaminated by a hydrous component from the adjacent subduction zone.
Resumo:
The compositions of 45 natural basalt glasses from nine dredge stations and six Deep Sea Drilling Project Leg 54 sites near 9°N on the East Pacific Rise have been determined by electron microprobe. These comprise 19 distinct chemical groups. Seventeen of these fall in the range of the eastern Pacific tholeiite suite, which is characterized by marked enrichment in FeO*, TiO2, K2O, and P2O5 as CaO, MgO, and Al2O3 all decrease. Based on trace elements, an estimated 50-75 per cent fractionation of plagioclase, clinopyroxene, and olivine is required to produce ferrobasalts from parental olivine tholeiites. Additional chemical variations occur which require source heterogeneities, differences in the degree of melting, different courses of shallow fractionation, or magma mixing to explain. Glass compositions from within the Siqueiros fracture zone are mostly less fractionated than those from the flanks of the Rise, and show chemical differences which require variations in the depth of melting or highpressure fractionation to explain. Some of them could not be parental to East Pacific Rise flank ferrobasalts. Two remaining glass groups, from dredge hauls atop a ridge and a seamount, respectively, have distinctly higher K2O, P2O5, and TiO2 as well as lower CaO/Al2O3 and SiO2 at corresponding values of MgO than the tholeiite suite. These abundances, and whole-rock Y/Zr, Ce/Y, Nb/Zr, and isotopic abundances indicate that these basalts had a deeper, less depleted mantle source than the Rise tholeiite suite. Trace element abundances preclude the "ridge" basalt type from being a hybrid between the "seamount" basalt type and any East Pacific Rise tholeiite so far analyzed. The East Pacific Rise glasses from 9°N compare very closely to glasses dredged and drilled elsewhere on the East Pacific Rise. However, glass compositions from Site 424 on the Galapagos Rift drilled during Leg 54, as well as glasses and basalts dredged from the Galapagos and Costa Rica rifts, indicate that a greater degree of melting prevailed along much of the Galapagos Spreading Center than anywhere along the East Pacific Rise.
Resumo:
Major and trace element analyses are presented for 110 samples from the DSDP Leg 60 basement cores drilled along a transect across the Mariana Trough, arc, fore-arc, and Trench at about 18°N. The igneous rocks forming breccias at Site 453 in the west Mariana Trough include plutonic cumulates and basalts with calc-alkaline affinities. Basalts recovered from Sites 454 and 456 in the Mariana Trough include types with compositions similar to normal MORB and types with calc-alkaline affinities within a single hole. At Site 454 the basalts show a complete compositional transition between normal MORB and calc-alkaline basalts. These basalts may be the result of mixing of the two magma types in small sub-crustal magma reservoirs or assimilation of calc-alkaline, arc-derived vitric tuffs by normal MORB magmas during eruption or intrusion. A basaltic andesite clast in the breccia recovered from Site 457 on the active Mariana arc and samples dredged from a seamount in the Mariana arc are calc-alkaline and similar in composition to the basalts recovered from the Mariana Trough and West Mariana Ridge. Primitive island arc tholeiites were recovered from all four sites (Sites 458-461) drilled on the fore-arc and arc-side wall of the trench. These basalts form a coherent compositional group distinct from the Mariana arc, West Mariana arc, and Mariana Trough calc-alkaline lavas, indicating temporal (and perhaps spatial?) chemical variations in the arc magmas erupted along the transect. Much of the 209 meters of basement cored at Site 458 consists of endiopside- and bronzite-bearing, Mg-rich andesites with compositions related to boninites. These andesites have the very low Ti, Zr, Ti/Zr, P, and rare-earthelement contents characteristic of boninites, although they are slightly light-rare-earth-depleted and have lower MgO, Cr, Ni, and higher CaO and Al2O3 contents than those reported for typical boninites. The large variations in chemistry observed in the lavas recovered from this transect suggest that diverse mantle source compositions and complex petrogenetic process are involved in forming crustal rocks at this intra-oceanic active plate margin.
Resumo:
The Taupo Volcanic Zone (TVZ), central North Island, New Zealand, is the most frequently active Quaternary rhyolitic system in the world. Silicic tephras recovered from Ocean Drilling Programme Site 1123 (41°47.16'S, 171°29.94'W; 3290 m water depth) in the southwest Pacific Ocean provide a well-dated record of explosive TVZ volcanism since ~1.65 Ma. We present major, minor and trace element data for 70 Quaternary tephra layers from Site 1123 determined by electron probe microanalysis (1314 analyses) and laser ablation inductively coupled plasma mass spectrometry (654 analyses). Trace element data allow for the discrimination of different tephras with similar major element chemistries and the establishment of isochronous tie-lines between three sediment cores (1123A, 1123B and 1123C) recovered from Site 1123. These tephra tie-lines are used to evaluate the stratigraphy and orbitally tuned stable isotope age model of the Site 1123 composite record. Trace element fingerprinting of tephras identifies ~4.5 m and ~7.9 m thick sections of repeated sediments in 1123A (49.0-53.5 mbsf [metres below seafloor]) and 1123C (48.1-56.0 mbsf), respectively. These previously unrecognised repeated sections have resulted in significant errors in the Site 1123 composite stratigraphy and age model for the interval 1.15-1.38 Ma and can explain the poor correspondence between d18O profiles for Site 1123 and Site 849 (equatorial Pacific) during this interval. The revised composite stratigraphy for Site 1123 shows that the 70 tephra layers, when correlated between cores, correspond to ~37-38 individual eruptive events (tephras), 7 of which can be correlated to onshore TVZ deposits. The frequency of large-volume TVZ-derived silicic eruptions, as recorded by the deposition of tephras at Site 1123, has not been uniform through time. Rather it has been typified by short periods (25-50 ka) of intense activity bracketed by longer periods (100-130 ka) of quiescence. The most active period (at least 1 event per 7 ka) occurred between ~1.53 and 1.66 Ma, corresponding to the first ~130 ka of TVZ rhyolitic magmatism. Since 1.2 Ma, ~80% of tephras preserved at Site 1123 and the more proximal Site 1124 were erupted and deposited during glacial periods. This feature may reflect either enhanced atmospheric transport of volcanic ash to these sites (up to 1000 km from source) during glacial conditions or, more speculatively, that these events are triggered by changes in crustal stress accumulation associated with large amplitude sea-level changes. Only 8 of the ~37-38 Site 1123 tephra units (~20%) can be found in all three cores, and 22 tephra units (~60%) are only present in one of the three cores. Whether a tephra is preserved in all three cores does not have any direct relationship to eruptive volume. Instead it is postulated that tephra preservation at Site 1123 is 'patchy' and influenced by the vigorous nature of their deposition to the deep ocean floor as vertical density currents. At this site, at least 5 cores would need to have been drilled within a proximity of 10's to 100's of metres of each other to yield a >99% chance of recovering all the silicic tephras deposited on the ocean surface above it in the past 1.65 Ma.
Resumo:
Fifty-two samples of basalt from the four holes drilled on the Leg 81 transect across the Rockall margin were analyzed by X-ray fluorescence for Rb, Sr, Y, Zr, and Nb. On the basis of these results 13 samples were chosen for major and supplementary trace-element analysis. The results show no progressive change in the character of the volcanism, from Hole 555 in the continental domain through Holes 552 and 553A in the dipping reflector sequence to Hole 554A on the outer high. Two distinct magma types are present, apparently reflecting heterogeneity of the underlying mantle, but both types are present in both Holes 553A and 555, while Hole 552 and Hole 554 are each composed of a single type. Both magma types have a clear ocean-floor basalt signature when examined by discrimination diagrams, as does the basalt from Deep Sea Drilling Project Site 112, which formed at the same time as the Leg 81 basalts slightly farther south along the spreading center. In contrast, the basalts of East Greenland, formed at the same time, are more enriched in incompatible elements and have a within-plate geochemical signature, as is found in some basalts of Iceland today. Clearly the present distinction in geochemistry between the basalts of Iceland and those erupting well south on the Reykjanes Ridge was already established when continental splitting took place.
Resumo:
Conventional K-Ar and 40Ar/39Ar age data on altered basalts from DSDP Hole 192A on Meiji Guyot, Emperor Seamount chain, indicate a minimum age for the volcano of 61.9 ± 5.0 m.y. The K-Ar data are consistent with the early Maestrichtian date of the overlying sediments, but do not provide either a positive or negative test of the hypothesis that Meiji is older than Emperor volcanoes to the south. The most prominent alteration affecting the age measurements is potassium metasomatism, particularly of feldspar phenocrysts. The K-Ar apparent ages of feldspar separates from the Meiji basalts show that more than half of the potassium metasomatism occurred within the last 25 m.y. or so, and that if the potassium replacement rate has been constant, then the alteration of the Meiji basalts did not begin for 10 to 20 m.y. after the volcano formed.
Resumo:
Legs 59 and 60 of the International Phase of Oceanic Drilling (IPOD) were designed to study the nature and history of volcanism of the active Mariana arc, its currently spreading inter-arc basin (the Mariana Trough), and the series of inactive basins and intervening ridges that lie to the west. The older basins and ridges were drilled during Leg 59 as the first part of a transect of single-bit holes drilled in each major basin and ridge. The eastern part of the transect - the technically active region - was drilled during Leg 60. The evolution of island-arc volcanos and magma genesis associated with lithospheric subduction remain some of the most complex petrologic problems confronting us. Many types of source material (mantle, oceanic crust, continental crust) and an unusually wide range of possible physical conditions at the time of magma genesis must be identified even before the roles of partial melting and subsequent magma fractionation, mixing, and contamination can be assessed.
Resumo:
Ocean Drilling Program Leg 135 provided igneous rock cores from six sites drilled on a transect across the Lau Basin between the Lau Ridge remnant arc and the modem spreading ridges of the Central and Eastern Lau Spreading Centers. The drill cores sampled crust from the earliest stage of backarc extension (latest Miocene time, about 6 Ma), and younger crust (late Pliocene, about 3.8-2 Ma, and middle Pleistocene, about 0.64-0.8 Ma). Nearly all of the igneous samples are from tholeiitic basalt flows; many of them are interbedded with arc-composition volcaniclastic sediments. Rock compositions range from olivine-plagioclase-clinopyroxene basalt, with up to 8% MgO, to oceanic andesites with less than 3.2% MgO and silica contents as high as 56%. The oldest rocks recovered are close in composition to rocks formed at the modern Central and Eastern Lau Spreading Centers and have MORB-like characteristics. Generation of the oldest units was coeval with arc-tholeiitic volcanism on the Lau Ridge less than 100 km to the west. The arc and backarc melts came from different mantle sources. At three sites near the center of the basin, the crust is arc-tholeiitic basalt, two-pyroxene basaltic-andesite, and two-pyroxene andesite. These rocks have many similarities to modem Tofua Arc lavas yet they were drilled within 70 km of the MORB-like Eastern Lau Spreading Center. Estimates of the minimum age for these arc-like rocks indicate that they are late Pliocene (about 2 Ma). These ages overlap the age of the nearby Eastern Lau Spreading Center. The heterogeneous crust of the Lau Basin carries many of the signatures of supra-subduction zone (SSZ) melts but also has a distinct MORB-like component. Mixing between SSZ and MORB mantle sources may explain the variations and the spatial distribution of magma types.
Resumo:
This datafile presents chemical and physical as well as age dating information from the Store Mosse peat bog in southern Sweden. This record dates back to 8900 cal yr BP. The aim of the research was to reconstruct mineral dust deposition over time. As such we have only presented the lithogenic element data (Al, Ga, Rb, Sc, Ti, Y, Zr, Th and the REE) as the sample preparation method was tailored to these. This data is supported by parameters describing the deposit including bulk density, humification, ash content and net peat accumulation rates.
Resumo:
Rocks of the lower sheeted dike complex of Hole 504B sampled during Leg 140 were analyzed for major and trace element compositions to investigate the effects of igneous processes and hydrothermal alteration on the compositions of the rocks. The rocks are relatively uniform in composition and similar to the shallower dikes. They are moderately evolved mid-ocean-ridge basalts (MORB) with relatively high MgO (7.9-10 wt%) and Mg# (0.60-0.70), and have unusually low incompatible element contents (TiO2 = 0.42-1.1 wt%, Zr = 23-62 ppm). Discrete compositional intervals in the hole reflect varying degrees of differentiation, and olivine and plagioclase accumulation in the rocks, and may be related to injection of packets of dikes having similar compositions. Systematic depletions of total REE, Zr, Y, TiO2, and P2O5 in centimeter-size patches are most likely attributed to exclusion of highly differentiated, late-stage interstitial liquids from small portions of the rocks. The rocks exhibit increased H2O+ reflecting hydrothermal alteration. Replacement of primary plagioclase by albite and oligoclase led to local gains of Na2O, losses of CaO, and slightly positive Eu anomalies. Some mobility of P2O5 led to minor increases and decreases in P2O5 contents, and some local mobility of Ti may have occurred during alteration of titanomagnetite to titanite. Higher temperatures of alteration in the lower sheeted dikes led to breakdown of pyroxene and sulfide minerals and losses of Zn, Cu, and S to hydrothermal fluids. Later addition of anhydrite to the rocks in microfractures and replacing plagioclase caused local increases in sulfur contents. The lower sheeted dikes are a major source of metals to hydrothermal fluids for the formation of metal sulfide deposits on and within the seafloor.