4 resultados para Woody species
em Publishing Network for Geoscientific
Resumo:
The conservation of birds and their habitats is essential to maintain well-functioning ecosystems including human-dominated habitats. In simplified or homogenized landscapes, patches of natural and semi-natural habitat are essential for the survival of plant and animal populations. We compared species composition and diversity of trees and birds between gallery forests, tree islands and hedges in a Colombian savanna landscape to assess how fragmented woody plant communities affect forest bird communities and how differences in habitat characteristics influenced bird species traits and their potential ecosystem function. Bird and tree diversity was higher in forests than in tree islands and hedges. Soil depth influenced woody species distribution, and canopy cover and tree height determined bird species distribution, resulting in plant and bird communities that mainly differed between forest and non-forest habitat. Bird and tree species and traits widely co-varied. Bird species in tree islands and hedges were on average smaller, less specialized to habitat and more tolerant to disturbance than in forest, but dietary differences did not emerge. Despite being less complex and diverse than forests, hedges and tree islands significantly contribute to the conservation of forest biodiversity in the savanna matrix. Forest fragments remain essential for the conservation of forest specialists, but hedges and tree islands facilitate spillover of more tolerant forest birds and their ecological functions such as seed dispersal from forest to the savanna matrix.
Resumo:
Previous pollen analytical studies on sediments from the pleistocene lake basin at Samerberg, situated on the northern edge of the Bavarian Alps (47°45' N, 12°12' E, 607 m a.s.l.) had been performed on samples taken from cores and exposures close to the southern shore of the former lake. After geoelectric and refraction-seismic measurements had shown that the lake basin had been much deeper in its northern part, another core was taken where maximum depth could be expected. The corer penetrated three moraines, two of them lying above pollen-bearing sediments, and one below them, and reached the hard rock (Kössener Kalk) at a depth of 93 m. Two forest phases could be identified by pollen analysis. The pollen record begins abruptly in a forest phase at the end of a spruce-dominated period when fir started to spread (DA 1, DA = pollen zone). Following this, Abies (fir) was the main tree species at Samerberg, Picea being second, and deciduous trees were almost non-existent. First box (Buxus) was of major importance in the fir forests (DA 2), but later on beech (Fagus) and wing-nut (Pterocarya) spread (DA 3). Finally this forest gave way to a spruce forest with pine (DA 4). The beginning and the end of this interglacial cycle are not recorded. Its vegetational development is different from the eemian one known from earlier studies at Samerberg. It is characterized by the occurrence of Abies together with Buxus, Pterocarya and Fagus. A similar association of woody species is known only from the Holsteinian age deposits in an area ranging from England to Poland, though at no other place these species were such important constituents of the vegetation as at Samerberg. Therefore zone 1 to 4 are attributed to the Holsteinian interglacial period. The younger forest phase, separated from the interglacial by a stadial with open vegetation (DA 5), seems to be completely represented, though its sediments are disturbed, apparently by sliding which caused repetition of same-age-sediments in the core (DA 7a, b, c) The vegetational development is simple. A juniper phase (DA 6) was followed by reforestation with spruce, accompanied by some fir (DA 7, 9). Finally pine became the dominant species (DA 9). The simple vegetational development of this younger forest phase does not allow a safe correlation with one of the known pre-eemian interstadials, but for stratigraphical reasons it can be related best to the Dömnitz-interglacial, which among others is also known as Wacken- or Holstein-II-interglacial. Possibly another phase of reforestation is indicated at the end of the following stadial (DA 10). But due to an erosional unconformity nothing than the rise of the juniper curve can be stated. It was only after this sequence of forest phases and periods with open vegetation that glaciers reached the Samerberg area again.
Resumo:
(expanded by Eberhard Grüger, Göttingen) The site "Höllerer See" is a lake in the northern foreland of the Alps, about 30 km north of the city of Salzburg/Austria, situated in the south-western part of Oberösterreich/Austria. A 2 m long piston core from this locality, consisting entirely of calcareous gyttja, was studied by pollen analysis. The three lowermost samples (1.98, 1.95 and 1.92 m) were deposited during the Preboreal when Pinus and Betula were still the dominating forest trees. High pollen values of thermophilous woody species (mainly Corylus and Quercus, but also Ulmus, Tilia, Fraxinus) prove the Boreal age of the next younger sample (1.91 m). The following two pollen spectra attest that Alnus (1.89 m) and - later (1.88 m) - Fagus had become important members of the local (Alnus) and the regional (Fagus) vegetation. From this level up to the top of the profile these two tree taxa contribute - together with Betula - always 50 to 80 % to the arboreal pollen sum. The upper 1.89 m of sediment of the Höllerer See core evidently date from the Subboreal and the Subatlantic. As Preboreal sediment was stated at the base of the profile it must be concluded that most of the Boreal and the Atlantic is - for whatever reason - not represented by sediment in this core. As no radiocarbon dates are available age estimates of the distinguished pollen zones can be achieved only by correlating major changes of the former vegetation with historical events which probably influenced the then contemporary vegetation. The pollen grains of the Triticum and Hordeum type found in samples of zone 2.1 might indicate the growing of cereals in the region during the Late Bronze Age. The first pollen grains of Secale date from the boundary Hallstatt/Latène Age (zone 2.2). The cereal curves become continuous in Bavarian times (Bajuwarenzeit, Middle Ages, zone 3.3). The Plantago laceolata curve, continuous since 1.7 m depth (zone 2.1), points to animal breeding since the Early Subatlantic (Hallstattzeit). This curve reaches its absolute maximum in Roman time (zone 3.1). Roman time forest clearance caused a drastic decrease of tree pollen curves (start of zone 3.1). Values of anthropogenic indicators as high as in zone 3.1 are found again - after a distinct decrease in zone 3.2 - not till the Bavarians settled in the region (6th century). Maximal Fagus values and the simultaneous total lack of anthropogenic indicators mark the Migration Period (zone 3.2). The Younger Subatlantic (zone 4) is characterized by a decrease of deciduous forests due to medieval forest clearance. At the same time the conifers Pinus and Picea gained in importance. The lake was probably used for retting hemp in Medieval times. The distinction of the pollen grains of Cannabis and Humulus might not be certain in all cases. It is known that hemp as well as hop was cultivated in the study area. Markers were added to the samples at the beginning of pollen preparation (13500 Lycopodium spores, sample volume 0.5 cm**3) and counted together with the pollen grains. Therefore pollen concentrations can be calculated: Concentration = C * F / V (with C = number of grains of a particular pollen type, V = volume of the untreated pollen sample, F = marker added/marker counted). F ranges from 39 to 1688. Factors that large are not suited to produce reliably interpretable pollen concentrations. Consequently no use was made of the pollen concentrations in this thesis, although a concentration diagram is added.
Resumo:
The improved understanding of the pollen signal in the marine sediments offshore of northwest Africa is applied to deep-sea core M 16017-2 at 21°N. Downcore fluctuations in the percentage, concentration and influx diagrams record latitudinal shifts of the main northwest African vegetation zones and characteristics of the trade winds and the African Easterly Jet. Time control is provided by 14C ages and 180 records. During the period 19,000-14,000 yr B.P. a compressed savanna belt extended between about 12 ° and 14-15°N. The Sahara had maximally expanded northward and southward under hyperarid climatic conditions. The belt with trade winds and dominant African Easterly Jet transport had not shifted latitudinally. The trade winds were strong as compared to the modern situation but around 13,000 yr B.P. the trade winds weakened. After 14,000 yr B.P. the climate became less arid south of the Sahara and a first spike of fluvial runoff is registered around 13,000 yr B.P. Fluvial runoff increased strongly around 11,000 yr B.P. and maximum runoff is recorded from about 9000-7800 yr B.P. Around 12,500 yr B.P. the savanna belt started to shift northward and became richer in woody species: it shifted about 6° of latitude, reached its northernmost position during the period of 9200-7800 yr B.P. and extended between about 16° and 24°N at that time. Tropical forest had reached its maximum expansion and the Guinea zone reached as far north as about 15°N, reflecting very humid climatic conditions south of the Sahara. North of the Sahara the climate also became more humid and Mediterranean vegetation developed rapidly. The Sahara had maximally contracted and the trade winds were weak and comparable with the present day intensity. After about 7800 yr B.P. the southern fringe of the Sahara and accordingly the savanna belt, shifted rapidly southward again.