11 resultados para Witkowski Józef

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Middle Eocene Climatic Optimum (MECO) is a major transient warming event that occurred at ~ 40 Ma and reversed a long-term cooling trend through the early and middle Eocene. We report the results of a high-resolution, quantitative study of siliceous microfossils at Ocean Drilling Program Sites 748 and 749 (Southern Kerguelen Plateau, Southern Ocean, ~ 58°S) across a ~ 1.4 myr interval spanning the MECO event. At both sites, a significant increase in biosiliceous sedimentation is associated with the MECO event. Rich siliceous planktonic microfossil assemblages in this interval are unusual in that they are dominated by ebridians, with radiolarians as a secondary major component. Silicoflagellates and diatoms comprise only a minor fraction of the assemblage, in contrast to siliceous microfossil assemblages that characterize modern Southern Ocean sediments. Based on our new siliceous microfossil records, we interpret two ~ 300 kyr periods of elevated nutrient availability in Southern Ocean surface waters which span the peak warming interval of the MECO and the post-MECO cooling interval. A diverse assemblage of large silicoflagellates belonging to the Dictyocha grandis plexus is linked to the rapid rise in sea-surface temperatures immediately prior to peak warmth, and a pronounced turnover is observed in both ebridian and silicoflagellate assemblages at the onset of peak warming. The interval of peak warmth is also characterized by high abundance of cosmopolitan ebridians (e.g., Ammodochium spp.) and silicoflagellates (e.g., Naviculopsis spp.), and increased abundance of tropical and subtropical diatom genera (e.g., Asterolampra and Azpeitia). These observations confirm the relative pattern of temperature change interpreted from geochemical proxy data at multiple Southern Ocean sites. Furthermore, rapid assemblage changes in both autotrophic and heterotrophic siliceous microfossil groups indicate a reorganization of Southern Ocean plankton communities in response to greenhouse warming during the MECO event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Middle Eocene Climatic Optimum (MECO; ~ 40 million years ago [Ma]) is one of the most prominent transient global warming events in the Paleogene. Although the event is well documented in geochemical and isotopic proxy records at many locations, the marine biotic response to the MECO remains poorly constrained. We present new high-resolution, quantitative records of siliceous microplankton assemblages from the MECO interval of Ocean Drilling Program (ODP) Site 1051 in the subtropical western North Atlantic Ocean, which are interpreted in the context of published foraminiferal and bulk carbonate stable isotope (d18O and d13C) records. High diatom, radiolarian and silicoflagellate accumulation rates between 40.5 and 40.0 Ma are interpreted to reflect an ~ 500 thousand year (kyr) interval of increased nutrient supply and resultant surface-water eutrophication that was associated with elevated sea-surface temperatures during the prolonged onset of the MECO. Relatively low pelagic siliceous phytoplankton sedimentation accompanied the peak MECO warming interval and the termination of the MECO during an ~ 70 kyr interval centered at ~ 40.0 Ma. Following the termination of the MECO, an ~ 200-kyr episode of increased siliceous plankton abundance indicates enhanced nutrient levels between ~ 39.9 and 39.7 Ma. Throughout the Site 1051 record, abundance and accumulation rate fluctuations in neritic diatom taxa are similar to the trends observed in pelagic taxa, implying either similar controls on diatom production in the neritic and pelagic zones of the western North Atlantic or fluctuations in sea level and/or shelf accommodation on the North American continental margin to the west of Site 1051. These results, combined with published records based on multiple proxies, indicate a geographically diverse pattern of surface ocean primary production changes across the MECO. Notably, however, increased biosiliceous accumulation is recorded at both ODP Sites 1051 and 748 (Southern Ocean) in response to MECO warming. This may suggest that increased biosiliceous sediment accumulation, if indeed a widespread phenomenon, resulted from higher continental silicate weathering rates and an increase in silicic acid supply to the oceans over several 100 kyr during the MECO.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador: